
Chapter 9

Data Visualization

Visualizing data is key in e↵ective data analysis. It is useful for the following
purposes:

1. initially investigating datasets,

2. confirming or refuting data models, and

3. elucidating mathematical or algorithmic concepts.

In most of this chapter we explore di↵erent types of data graphs using the R
programming language which has excellent graphics functionality. We end the
chapter with a description of Python’s matplotlib module - a popular Python
tool for data visualization.

9.1 Graphing Data in R

We focus on two R graphics packages: graphics and ggplot2. The graphics pack-
age contains the original R graphics functions and is installed and loaded by
default. Its functions are easy to use and produce a variety of useful graphs. The
ggplot2 package provides alternative graphics functionality based on Wilkinson’s
grammar of graphics [31]. To install it and bring it to scope type the following
commands.

install.packages('ggplot2')
library(ggplot2)

When creating complex graphs, the ggplot2 syntax is considerable simpler
than the syntax of the graphics package. A potential disadvantage of ggplot2
package is that rendering graphics using ggplot2 may be substantially slower.

283

284 CHAPTER 9. DATA VISUALIZATION

9.2 Datasets

We use three datasets to explore data graphs. The faithful dataframe is a
part of the datasets package that is installed and loaded by default. It has has two
variables: eruption time and waiting time to next eruption (both in minutes) of
the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. The code
below displays the variable names and the corresponding summary statistics.

names(faithful) # variable names
[1] "eruptions" "waiting"
summary(faithful) # variable summary
eruptions waiting
Min. :1.600 Min. :43.0
1st Qu.:2.163 1st Qu.:58.0
Median :4.000 Median :76.0
Mean :3.488 Mean :70.9
3rd Qu.:4.454 3rd Qu.:82.0
Max. :5.100 Max. :96.0

The mtcars dataframe, which is also included in the datasets package,
contains information concerning multiple car models extracted from 1974 Motor
Trend magazine. The variables include model name, weight, horsepower, fuel
e�ciency, and transmission type.

summary(mtcars)
mpg cyl
Min. :10.40 Min. :4.000
1st Qu.:15.43 1st Qu.:4.000
Median :19.20 Median :6.000
Mean :20.09 Mean :6.188
3rd Qu.:22.80 3rd Qu.:8.000
Max. :33.90 Max. :8.000
disp hp
Min. : 71.1 Min. : 52.0
1st Qu.:120.8 1st Qu.: 96.5
Median :196.3 Median :123.0
Mean :230.7 Mean :146.7
3rd Qu.:326.0 3rd Qu.:180.0
Max. :472.0 Max. :335.0
drat wt
Min. :2.760 Min. :1.513
1st Qu.:3.080 1st Qu.:2.581
Median :3.695 Median :3.325
Mean :3.597 Mean :3.217
3rd Qu.:3.920 3rd Qu.:3.610
Max. :4.930 Max. :5.424
qsec vs
Min. :14.50 Min. :0.0000
1st Qu.:16.89 1st Qu.:0.0000

9.3. GRAPHICS AND GGPLOT2 PACKAGES 285

Median :17.71 Median :0.0000
Mean :17.85 Mean :0.4375
3rd Qu.:18.90 3rd Qu.:1.0000
Max. :22.90 Max. :1.0000
am gear
Min. :0.0000 Min. :3.000
1st Qu.:0.0000 1st Qu.:3.000
Median :0.0000 Median :4.000
Mean :0.4062 Mean :3.688
3rd Qu.:1.0000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000
carb
Min. :1.000
1st Qu.:2.000
Median :2.000
Mean :2.812
3rd Qu.:4.000
Max. :8.000

The mpg dataframe is a part of the ggplot2 package and it is similar to
mtcars in that it contains fuel economy and other attributes, but it is larger and
it contains newer car models extracted from the website http://fueleconomy.gov.

names(mpg)
[1] "manufacturer" "model"
[3] "displ" "year"
[5] "cyl" "trans"
[7] "drv" "cty"
[9] "hwy" "fl"
[11] "class"

More information on any of these datasets may be obtained by typing help(X)
with X corresponding to the dataframe name when the appropriate package is in
scope.

9.3 Graphics and ggplot2 Packages

The graphics package contains two types of functions: high-level functions
and low-level functions. High level functions produce a graph, while low level
functions modify an existing graph. The primary high level function, plot,
takes as arguments one or more dataframe columns representing data and other
arguments that modify its default behavior (some examples appear below).

Other high-level functions in the graphics package are more specialized
and produce a specific type of graph, such as hist for producing histograms,
or curve for producing curves. We do not explore many high level functions as
they are generally less convenient to use than the corresponding functions in the
ggplot2 package.

286 CHAPTER 9. DATA VISUALIZATION

Examples of low-level functions in the graphics package are:

• title adds or modifies labels of title and axes,

• grid adds a grid to the current figure,

• legend displays a legend connecting symbols, colors, and line-types to
descriptive strings, and

• lines adds a line plot to an existing graph.

The two main functions in the ggplot2 package are qplot and ggplot. The
qplot function accepts as arguments one or more data variables assigned to
the variables x, y, and z (in some cases only one or two of these arguments are
specified). The more complex function ggplot accepts as arguments a dataframe
and an object returned by the aes function which accepts data variables as
arguments.

In contrast to qplot, ggplot does not create a graph and returns instead
an object that may be modified by adding layers to it using the + operator. After
appropriate layers are added the object may be saved to disk or printed using
the print function. The layer addition functionality applies to qplot as well.

The ggplot2 package provides automatic axes labeling and legends. To take
advantage of this feature the data must reside in a dataframe with informative
column names. We emphasize this approach as it provides more informative
dataframes column names, in addition to simplifying the R code.

For example, the following code displays a scatter plot of the columns of a
hypothetical dataframe dataframe containing two variables col1 and col2
using the graphics package and then adds a title to the graph.

plot(x = dataframe$col_1, y = dataframe$col_2)
title(main = "figure title") # add title

To create a similar graph using the qplot function use the following code.

qplot(x = x1,
y = x2,
data = DF,
main = "figure title",
geom = "point")

The corresponding ggplot code appears below.

ggplot(dataframe, aes(x = col1, y = col2)) + geom_point()

In the following sections we describe several di↵erent types of data graphs.

9.4. STRIP PLOTS 287

9.4 Strip Plots

The simplest way to graph one-dimensional numeric data is to graph them as
points in a two-dimensional space, with one coordinate corresponding to the
index of the data point, and the other coordinate corresponding to its value.

To plot a strip plot using the graphics package, call plot with a single nu-
merical dataframe column. The resulting x-axis indicates the row number, and
the y-axis indicates the numeric value. The xlab, ylab, and main parameters
modify the x-label title, y-label title, and figure title.

plot(faithful$eruptions,
xlab = "sample number",
ylab = "eruption times (min)",
main = "Old Faithful Eruption Times")

0 50 100 150 200 250

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Old Faithful Eruption Times

sample number

er
u
p
ti
on

ti
m
es

(m
in
)

We conclude from the figure above that Old Faithful has two typical eruption
times — a long eruption time around 4.5 minutes, and a short eruption time

288 CHAPTER 9. DATA VISUALIZATION

around 1.5 minutes. It also appears that the order in which the dataframe rows
are stored is not related to the eruption variable.

9.5 Histograms

An alternative way to graph one dimensional numeric data is using the histogram
graph. The histogram divides the range of numeric values into bins and displays
the number of data values falling within each bin. The width of the bins influences
the level of detail. Very narrow bins maintain all the information present in the
data but are hard to draw conclusions from, as the histogram becomes equivalent
to a sorted list of data values. Very wide bins lose information due to overly
aggressive smoothing. A good bin width balances information loss with useful
data aggregation. Unlike strip plots that contain all of the information present in
the data, histograms discard the ordering of the data points, and treat samples
in the same bin as identical.

The hist(data, breaks = num bins) function within the graphics pack-
age can be used to display a histogram. The xlab, ylab, and main parameters
described in Section 9.4 can be added as optional parameters to hist. See
help(hist) for more details on the di↵erent parameters, and in particular for
assistance on controlling the bin widths. For example, the code below displays a
histogram of eruption times of Old Faithful using 20 bins.

hist(faithful$eruptions,
breaks = 20,
xlab = "eruption times (min)",
ylab = "count",
main = "")

9.5. HISTOGRAMS 289

eruption times (min)

co
u
nt

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
10

20
30

40

We see a nice correspondence between the above histogram and the strip
plot in Section 9.4. There are clearly two typical eruption times – one around 2
minutes and one around 4.5 minutes.

To graph a histogram with the ggplot2 package, call qplot with two pa-
rameters: a dataframe column (assigned to the x argument) and a name of the
dataframe variable (assigned to the data argument). The two axes are auto-
matically labeled based on the names of the variables that they represent. For
example, the code below displays a histogram of the waiting time variable using
qplot.

qplot(x = waiting,
data = faithful,
binwidth = 3,
main = "Waiting time to next eruption (min)")

290 CHAPTER 9. DATA VISUALIZATION

0

10

20

30

40 60 80 100

waiting

co
u
nt

Waiting time to next eruption (min)

To create a histogram with the ggplot function, we pass an object returned
from the aes function, and add a histogram geometry layer using the + operator.

ggplot(faithful ,aes(x = waiting)) +
geom_histogram(binwidth = 1)

0

5

10

15

40 50 60 70 80 90

waiting

co
u
nt

Traditionally, the y axis in a histogram displays counts. An alternative is to
display the frequency by surrounding the data variable with .. on both sides. In

9.6. LINE PLOTS 291

this case, the height of each bin times its width equals the count of samples falling
in the bin divided by the total number of counts. As a result, the area under
the graph is 1 making it a legitimate probability density function (see TAOD
volume 1, Chapter 2 for a description of the probability density function). This
probability interpretation is sometimes advantageous, but it may be problematic
in that it masks the total number of counts.

ggplot(faithful, aes(x = waiting, y = ..density..)) +
geom_histogram(binwidth = 4)

0.00

0.01

0.02

0.03

0.04

40 60 80 100

waiting

d
en

si
ty

Note that selecting a wider bandwidth (as in the figure above) produces a
smoother histogram as compared to the figure before that. Selecting the best
bandwidth to use when graphing a specific dataset is di�cult and usually requires
some trial and error.

9.6 Line Plots

A line plot is a graph displaying a relation between x and y as a line in a Cartesian
coordinate system. The relation may correspond to an abstract mathematical
function or to relation present between two variables in a specific dataset.

The function curve in the graphics package displays mathematical functions.
In the example below, the first line defines a new function called sinc while the
second line plots it. Note the automatic labeling of the axes.

sinc = function(x) {
return(sin(pi * x) / (pi * x))

}
curve(sinc, -7, +7)

292 CHAPTER 9. DATA VISUALIZATION

-6 -4 -2 0 2 4 6

-0
.2

0.
2

0.
6

1.
0

x

si
n
c(
x)

Another option to display a line plot with the graphics package is to use
plot but with a type="l" parameter, as below. The variable lty allows us
to display di↵erent line types (dashed, dotted, etc.). We demonstrate this below
by plotting hwy mpg and city mpg as line plots, where the samples are sorted by
city mpg.

S = sort.int(mpg$cty, index.return = T)
S$x holds the sorted values of city mpg
S$ix holds the indices of the sorted values of city mpg
First plot the sorted city mpg values with a line plot
plot(S$x,

type = "l",
lty = 2,
xlab = "sample number (sorted by city mpg)",
ylab = "mpg")

add dashed line of hwy mpg
lines(mpg$hwy[S$ix] ,lty = 1)
legend("topleft", c("highway mpg", "city mpg"), lty = c(1, 2))

9.6. LINE PLOTS 293

0 50 100 150 200

10
15

20
25

30
35

sample number (sorted by city mpg)

m
p
g

highway mpg
city mpg

We can conclude from the plot above that (i) highway mpg tends to be higher
than city mpg, (ii) highway mpg tends to increase as city mpg increases, and (iii)
the di↵erence between the two quantities is less significant for cars with lower
fuel e�ciency.

The qplot function creates a line plot when passed a geom=line parameter.

x = seq(-2, 2, length.out = 30)
y = xˆ2
qplot(x, y, geom = "line")

294 CHAPTER 9. DATA VISUALIZATION

0

1

2

3

4

-2 -1 0 1 2

x

y

Below is a similar example where multiple geometries are present.

x = seq(-2, 2, length.out = 30)
y = xˆ2
qplot(x, y, geom = c("point", "line"))

0

1

2

3

4

-2 -1 0 1 2

x

y

The function ggplot creates the same plot by adding a line geometry layer
geom line() using the + operator.

9.7. SMOOTHED HISTOGRAM 295

new data frame with variables x,y = xˆ2
dataframe = data.frame(x = x, y = y)
ggplot(dataframe, aes(x = x, y = y)) + geom_line() + geom_point()

9.7 Smoothed Histogram

An alternative to the histogram is the smoothed histogram. Denoting n data
points by x

(1)
, . . . , x

(n), the smoothed histogram is the following function fh :
R ! R+

fh(x) =
1

n

nX

i=1

Kh(x� x

(i))

where the kernel function Kh : R ! R typically achieves its maximum at 0,
and decreases as |x � x

(i)| increases. We also assume that the kernel function
integrates to one

R
Kh(x) dx = 1 and satisfies the relation

Kh(r) = h

�1
K1(r/h).

We refer to K1 as the base form of the kernel and denote it as K.
Four popular kernel choices are the tricube, triangular, uniform, and Gaussian

kernels, defined as Kh(r) = h

�1
K(r/h) where the K(·) functions are respectively

K(r) = (1� |r|3)3 · 1{|r|<1} (Tricube)

K(r) = (1� |r|) · 1{|r|<1} (Triangular)

K(r) = 2�1 · 1{|r|<1} (Uniform)

K(r) = exp(�x

2
/2)/

p
2⇡ (Gaussian).

The following R code displays these kernels for h = 1 and h = 2. Note how
the kernel corresponding to h = 2 is twice as wide as the kernels corresponding
to h = 1. The technique used to display multiple panels in the same graph is
called faceting, and is described in the next section.

x_grid = seq(-3, 3, length.out = 100)
K1 = function(x) {

ind = abs(x) > 1
x = x * 0 + 1/2
x[ind] = 0
return(x)

}
K2 = function(x) {

ind = abs(x) > 1
x = 1 - abs(x)
x[ind] = 0
return(x)

}

296 CHAPTER 9. DATA VISUALIZATION

K3 = function(x) dnorm(x)
K4 = function(x) {

ind = abs(x) > 1
x = (1 - abs(x)ˆ3)ˆ3
x[ind] = 0
return(x)

}
R = stack(list('uniform' = K1(x_grid),

'triangular' = K2(x_grid),
'gaussian' = K3(x_grid),
'tricube' = K4(x_grid),
'uniform' = K1(x_grid / 2) / 2,
'triangular' = K2(x_grid / 2) / 2,
'gaussian' = K3(x_grid / 2) / 2,
'tricube' = K4(x_grid / 2) / 2))

head(R) # first six lines
values ind
1 0 uniform
2 0 uniform
3 0 uniform
4 0 uniform
5 0 uniform
6 0 uniform
names(R) = c('kernel.value', 'kernel.type')
R$x = x_grid
R$h[1:400] = '$h=1$'
R$h[401:800] = '$h=2$'
head(R) # first six lines
kernel.value kernel.type x h
1 0 uniform -3.000000 $h=1$
2 0 uniform -2.939394 $h=1$
3 0 uniform -2.878788 $h=1$
4 0 uniform -2.818182 $h=1$
5 0 uniform -2.757576 $h=1$
6 0 uniform -2.696970 $h=1$
qplot(x,

kernel.value,
data = R,
facets = kernel.type˜h,
geom = "line",
xlab = "x",
ylab = "$K_h(x)$")

9.7. SMOOTHED HISTOGRAM 297

h = 1 h = 2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

gau
ssian

trian
gu

lar
tricu

b
e

u
n
iform

-2 0 2 -2 0 2

x

K

h
(x
)

Above, we use LaTeX code (text strings containing $ symbols that surround
equation code in the example above) to annotate the axes labels or titles with
equations.

Identifying the functions gi(x)
def
= Kh(x�x

(i)) we see that fh is an average of
the gi functions, i = 1, . . . , n. Since the functions gi(x) are centered at x(i) and
decay with the distance between x and x

(i), their average fh will be high in areas
containing many data points and low in areas containing a few data points. The
role of the denominator n in fh is to ensure that the integral of fh is 1, making fh

a formal estimator of the underlying distribution (see TAOD volume 1, chapter
2).

The R code below graphs the smoothed histogram of the data

{�1, 0, 0.5, 1, 2, 5, 5.5, 6}

298 CHAPTER 9. DATA VISUALIZATION

using the Gaussian kernel. The graphs show fh as a solid line and the gi functions
as dashed lines (scaled down by a factor of 2 to avoid overlapping solid and dashed
lines).

In the first graph below, the h value is relatively small (h = 1/6), resulting
in a fh close to the a sequence of narrow spikes centered at the data points.
In the second graph h is larger (h = 1/3) showing a multimodal shape that is
significantly di↵erent from the first case. In the third case, h is relatively large
(h = 1), resulting in a fh that resembles two main components. For larger h, fh
will resemble a single unimodal shape.

data = c(-1, 0, 0.5, 1, 2, 5, 5.5, 6)
data_size = length(data)
x_grid = seq(-3, data_size, length.out = 100)
kernel_values = x_grid %o% rep(1, data_size)
f = x_grid * 0
for(i in 1:data_size) {

kernel_values[,i] = dnorm(x_grid, data[i], 1/6)/data_size
f = f + kernel_values[,i]

}
plot(x_grid, f, xlab = "x", ylab = "$f_h(x)$", type = "l")
for (i in 1:data_size) lines(x_grid, kernel_values[,i]/2, lty = 2)
title("Smoothed histogram ($h=1/6$)", font.main = 1)

9.7. SMOOTHED HISTOGRAM 299

-2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

f

h
(x
)

Smoothed histogram (h = 1/6)

f = x_grid * 0
for(i in 1:data_size) {

kernel_values[,i] = dnorm(x_grid, data[i], 1/3)/data_size
f = f + kernel_values[,i]

}
plot(x_grid, f, xlab = "x", ylab = "$f_h(x)$", type = "l")
for (i in 1:data_size) lines(x_grid, kernel_values[,i]/2, lty = 2)
title("Smoothed histogram ($h=1/3$)", font.main = 1)

300 CHAPTER 9. DATA VISUALIZATION

-2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

f

h
(x
)

Smoothed histogram (h = 1/3)

f = x_grid * 0
for(i in 1:data_size) {

kernel_values[,i] = dnorm(x_grid, data[i], 1)/data_size
f = f + kernel_values[,i]

}
plot(x_grid, f, xlab = "x" , ylab = "$f_h(x)$", type = "l")
for (i in 1:data_size) lines(x_grid, kernel_values[,i]/2, lty = 2)
title("Smoothed histogram ($h=1$)", font.main = 1)

9.7. SMOOTHED HISTOGRAM 301

-2 0 2 4 6 8

0.
05

0.
10

0.
15

x

f

h
(x
)

Smoothed histogram (h = 1)

The smoothed histogram is often more intuitive and informative than the non-
smoothed histogram. Just as the bin-width selection is crucial for obtaining an
informative histogram, selecting the kernel function is very important. Selecting
a value h that is too large will have the e↵ect of over-smoothing, causing the
resulting f̂ to be nearly constant. On the other, hand selecting a value of h that
is too small will have an under-smoothing e↵ect, and result in a wiggly and noisy
curve.

The ggplot2 package incorporates smoothed histogram graphing into the
qplot and ggplot functions. The value of h is controlled via the adjust
parameter that assigns h to be the corresponding multiple of an automatic value
determined by R. For example, setting adjust=1 uses R’s automatic h value,
while setting adjust=2 multiplies R’s automatic h value by 2.

In the first graph below we use a small h value, causing fh to exhibit four
clearly separated peaks — each corresponding to a separate gi function. This
choice of a small h corresponds to a histogram with a very narrow bin-width.

qplot(x = c(2, 3, 6, 7),
y = ..density..,
geom = c("density"),

302 CHAPTER 9. DATA VISUALIZATION

kernel = "gaussian",
adjust = 0.05,
xlab = "x",
ylab = "$f_h(x)$",
xlim = c(0, 9))

0.00

0.25

0.50

0.75

1.00

1.25

0.0 2.5 5.0 7.5

x

f

h
(x
)

Increasing the value of h by increasing the adjust parameter di↵uses the gi

functions, causing them to overlap more.

qplot(x = c(2,3,6,7),
y = ..density..,
geom = c("density"),
kernel = "gaussian",
adjust = 0.2,
xlab = "x",
ylab = "$f_h(x)$",
xlim = c(0,9))

0.0

0.1

0.2

0.3

0.0 2.5 5.0 7.5

x

f

h
(x
)

9.7. SMOOTHED HISTOGRAM 303

Increasing the value of h further aggregates the four peaks into two peaks,
each responsible for a corresponding pair of nearby points.

qplot(x = c(2, 3, 6, 7),
y = ..density..,
geom = c("density"),
kernel = "gaussian",
adjust = 0.5,
xlab = "x",
ylab = "$f_h(x)$",
xlim = c(0,9))

0.00

0.05

0.10

0.15

0.20

0.0 2.5 5.0 7.5

x

f

h
(x
)

Finally, further increasing the value of h results in nearly constant gi functions
and a nearly constant f̂ function. This corresponds to a histogram with very wide
bins in which all points fall in the same bin.

qplot(x = c(2, 3, 6, 7),
y = ..density..,
geom = c("density"),
kernel = "gaussian",
adjust = 10,
xlab = "x",
ylab = "$f_h(x)$",
xlim = c(0,9))

304 CHAPTER 9. DATA VISUALIZATION

0.000

0.005

0.010

0.015

0.020

0.025

0.0 2.5 5.0 7.5

x

f

h
(x
)

The figure below contrasts a histogram with a smoothed histogram using
the ggplot function. To enhance the visualization we made the histogram
semi-transparent using the alpha argument that takes a value between 0 and 1
indicating the transparency level.

ggplot(faithful, aes(x = waiting, y = ..density..)) +
geom_histogram(alpha = 0.3) +
geom_density(size = 1.5, color = "red")

0.00

0.01

0.02

0.03

0.04

0.05

50 60 70 80 90 100

waiting

d
en

si
ty

As is apparent from the figure above, smoothed histograms do a better job
of uncovering the mathematical relationship between the variable and the fre-
quency of density. This is backed mathematically by the fact that the smoothed
histogram is a better estimator for the underlying density than the histogram.
On the other hand, histograms features a more direct relationship between the
graph and the underlying data that is sometimes important in its own right.

9.8. SCATTER PLOTS 305

9.8 Scatter Plots

A scatter plot graphs the relationships between two numeric variables. It graphs
each pair of variables as a point in a two dimensional space whose coordinates
are the corresponding x, y values.

To create a scatter plot with the graphics package call plot with two dataframe
columns.

plot(faithful$waiting,
faithful$eruptions,
xlab = "waiting time (min)",
ylab = "eruption time (min)")

50 60 70 80 90

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

waiting time (min)

er
u
p
ti
on

ti
m
e
(m

in
)

We conclude from the two clusters in the scatter plot above that there are
two distinct cases: short eruptions and long eruptions. Furthermore, the waiting
times for short eruptions are typically short, while the waiting times for the long
eruptions are typically long. This is consistent with our intuition: it takes longer
to build the pressure for a long eruption than it does for a short eruption.

The points above are graphed using hollow circular markers. The arguments
pch, col, cex modify the marker’s shape, color, and size, respectively. Type

306 CHAPTER 9. DATA VISUALIZATION

help(pch) for more information on setting these values.

plot(faithful$waiting,
faithful$eruptions,
pch = 17,
col = 2,
cex = 1.2,
xlab = "waiting times (min)",
ylab = "eruption time (min)")

50 60 70 80 90

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

waiting times (min)

er
u
p
ti
on

ti
m
e
(m

in
)

In some cases we wish to plot a scatter plot of one dataframe column vs. an-
other, but distinguish the points based on the value of another dataframe column,
typically a factor variable (factors in R take values in an ordered or unordered
finite set — see Chapter 6). For example the plot below shows horsepower vs.
mile per gallon of cars within the mtcars dataset, but distinguishes between
automatic and manual transmission using di↵erent symbols. Transmission types
are encoded through the am variable, which takes values 0 or 1 — both legitimate
values for the pch marker shape argument.

9.8. SCATTER PLOTS 307

plot(mtcars$hp,
mtcars$mpg,
pch = mtcars$am,
xlab = "horsepower",
cex = 1.2,
ylab = "miles per gallon",
main = "mpg vs. hp by transmission")

legend("topright", c("automatic", "manual"), pch = c(0, 1))

50 100 150 200 250 300

10
15

20
25

30

mpg vs. hp by transmission

horsepower

m
il
es

p
er

ga
ll
on

automatic
manual

We draw several conclusions from this graph. First, there is an inverse rela-
tionship between horsepower and mpg. Second, for a given horsepower amount,
manual transmission cars are generally more fuel e�cient. Third, cars with the
highest horsepower tend to be manual. Indeed, the two highest horsepower cars
in the dataset are Maserati Bora and Ford Pantera, both sports cars with manual
transmissions.

To graph a scatter plot with qplot call it with two dataframe column pa-
rameters assigned to the x and y arguments.

308 CHAPTER 9. DATA VISUALIZATION

qplot(x = waiting,
y = eruptions,
data = faithful,
main = "Waiting times (sec) vs. eruptions (min)")

2

3

4

5

50 60 70 80 90

waiting

er
u
p
ti
on

s

Waiting times (sec) vs. eruptions (min)

The graph below shows a scatter plot of car weights vs mpg.

qplot(x = wt,
y = mpg,
data = mtcars,
main = "MPG vs. weight (x1000 lbs)")

9.8. SCATTER PLOTS 309

10

15

20

25

30

35

2 3 4 5

wt

m
p
g

MPG vs. weight (x1000 lbs)

We conclude from the figure above that there exists a somewhat linear trend
with negative slope between mpg and weight (though that trend decreases for
heavier cars).

Denoting the number of cylinders by size using the size argument allows us
to investigate the relationship between the three numeric quantities.

qplot(x = wt,
y = mpg,
data = mtcars,
size = cyl,
main = "MPG vs. weight (x1000 lbs) by cylinder")

310 CHAPTER 9. DATA VISUALIZATION

10

15

20

25

30

35

2 3 4 5

wt

m
p
g

cyl

4

5

6

7

8

MPG vs. weight (x1000 lbs) by cylinder

We conclude from the figure that cars with more cylinders tend to have higher
weight and lower fuel e�ciency. Alternatively, color can be used to encode the
number of cylinders using the argument color.

qplot(x = wt,
y = mpg,
data = mtcars,
color = cyl,
main = "MPG vs. weight (x1000 lbs) by cylinder")

In many cases the data contains a large amount of noise, and graphing it may
focus the viewer’s attention on the noise while hiding important general trends.
One technique to address this issue is to add a smoothed line curve yS , which is
a weighted average of the original data (y(i), x(i)) i = 1, . . . , n:

yS(x) =
nX

i=1

Kh(x� x

(i))Pn
i=1 Kh(x� x

(i))
y

(i)
. (9.1)

The Kh functions above are the kernel functions described in Section 9.7.
In other words, yS(x) is an average the y

(i) values, weighted in a way that
emphasizes y

(i) values whose corresponding x

(i) values are close to x. The de-
nominator in the definition of yS ensures that the weights defining the weighted
average sum to 1.

Equation (9.1) describes a statistical technique known as locally constant re-
gression that can be used to estimate a relationship between x and y without
making parametric assumptions (for example the assumption of a linear relation-
ship).

We demonstrate the smoothed scatter plot with several graphs below. The
first two graphs explore di↵erent values of h, the parameter that influences the

9.8. SCATTER PLOTS 311

spread or width of the gi = Kh(x, x(i)) functions. To adjust h, we modify the
span argument that has a similar role to the adjust parameter in the discussion
of the smoothed histogram above.

qplot(disp,
mpg,
data = mtcars,
main = "MPG vs Eng. Displacement") +

stat_smooth(method = "loess",
method.args = list(degree = 0),
span = 0.2,
se = FALSE)

10

15

20

25

30

35

100 200 300 400

disp

m
p
g

MPG vs Eng. Displacement

Increasing the value of the span parameter increases h, resulting in wider gi
functions and a less wiggly curve.

qplot(disp,
mpg,
data = mtcars,
main = "MPG vs Eng. Displacement") +

stat_smooth(method = "loess",
method.args = list(degree = 0),
span = 1,
se = FALSE)

312 CHAPTER 9. DATA VISUALIZATION

10

15

20

25

30

35

100 200 300 400

disp

m
p
g

MPG vs Eng. Displacement

Selecting an even larger h results in a nearly constant line.

qplot(disp,
mpg,
data = mtcars,
main = "MPG vs Eng. Displacement") +

stat_smooth(method = "loess",
method.args = list(degree = 0),
span = 10,
se = FALSE)

10

15

20

25

30

35

100 200 300 400

disp

m
p
g

MPG vs Eng. Displacement

9.8. SCATTER PLOTS 313

Omitting this parameter reverts to an automatically chosen value.

qplot(disp,
mpg,
data = mtcars,
main = "MPG vs Eng. Displacement") +

stat_smooth(method = "loess",
method.args = list(degree = 0),
se = FALSE)

10

15

20

25

30

35

100 200 300 400

disp

m
p
g

MPG vs Eng. Displacement

We can conclude from the graph above that mpg decreases as engine dis-
placement volume increases. The trend is nonlinear with a slope that changes
as follows: first small slope, then large slope, and then small slope again (in
absolute value). This information is readily available from the smoothed yS but
is not easy to discern from the original scatter plot data.

In some cases we want to examine multiple plots with the same x or y axes in
di↵erent side-by-side panels. The function qplot enables this using the facets
argument which takes a formula of the form a ⇠ b and creates multiple rows and
columns of panels (a determines the row variable and b the column variable).

In the first example below we graph two scatter plots side-by-side: mpg vs.
weight for automatic transmission cars and manual transmission cars. Note that
the two panels are side-by-side since the facet argument is . ⇠amf. The two
panels share the same axes’ scales, thus facilitating easy comparison. As before,
we create new dataframe columns with more appropriate names in order to create
more informative axes labeling. Changing the names of existing columns using
the function names is another option.

314 CHAPTER 9. DATA VISUALIZATION

add new dataframe columns with more appropriate names for
better axes labeling in future graphs
mtcars$amf[mtcars$am==0] = 'automatic'
mtcars$amf[mtcars$am==1] = 'manual'
mtcars$vsf[mtcars$vs==0] = 'flat'
mtcars$vsf[mtcars$vs==1] = 'V-shape'
qplot(x = wt,

y = mpg,
facets = .˜amf,
data = mtcars,
main = "MPG vs. weight by transmission")

automatic manual

10

15

20

25

30

35

2 3 4 5 2 3 4 5

wt

m
p
g

MPG vs. weight by transmission

We conclude from the graph above that manual transmission cars tend to
have lower weights and be more fuel e�cient.

The graph below plots mpg vs. weight for two panels - one above the other
indicating whether or not the engine is a V shape engine.

mtcars$amf[mtcars$am==0] = 'automatic'
mtcars$amf[mtcars$am==1] = 'manual'
mtcars$vsf[mtcars$vs==0] = 'flat'
mtcars$vsf[mtcars$vs==1] = 'V-shape'
qplot(x = wt,

y = mpg,
facets = vsf˜.,
data = mtcars,
main = "MPG vs. weight by engine") +

stat_smooth(se = FALSE)

9.8. SCATTER PLOTS 315

10

15

20

25

30

35

10

15

20

25

30

35

fl
at

V
-sh

ap
e

2 3 4 5

wt

m
p
g

MPG vs. weight by engine

We conclude from the graph above that cars with V shape engines tend to
weigh less and be more fuel e�cient.

The graph below shows a multi-row and multi-column array of panels. It
shows that manual transmission and V engine cars tend to be lighter and more
fuel e�cient. Automatic transmission and non-V engine are heavier and less fuel
e�cient.

mtcars$amf[mtcars$am==0] = 'automatic'
mtcars$amf[mtcars$am==1] = 'manual'
mtcars$vsf[mtcars$vs==0] = 'flat'
mtcars$vsf[mtcars$vs==1] = 'V-shape'
qplot(x = wt,

y = mpg,
data = mtcars,
facets = vsf˜amf,
main = "MPG vs. weight by transmission and engine")

316 CHAPTER 9. DATA VISUALIZATION

automatic manual

10

15

20

25

30

35

10

15

20

25

30

35

fl
at

V
-sh

ap
e

2 3 4 5 2 3 4 5

wt

m
p
g

MPG vs. weight by transmission and engine

The function plot can create a similar array of panels with synchronized axes
scales when it receives an entire dataframe as an argument. We demonstrate this
below by exploring all-pairs relationships between city mpg, highway mpg, and
engine displacement volume.

create a new dataframe with three columns: cty, hwy, and disp
DF = mpg[, c("cty", "hwy", "displ")]
plot(DF, main = "City MPG vs. Highway MPG vs. Engine Volume")

9.8. SCATTER PLOTS 317

cty

15 20 25 30 35 40 45

10
15

20
25

30
35

15
20

25
30

35
40

45

hwy

10 15 20 25 30 35 2 3 4 5 6 7

2
3

4
5

6
7

displ

City MPG vs. Highway MPG vs. Engine Volume

An alternative is the ggpairs function from the GGallly package. It also
displays smoothed histograms of all variables in the diagonal panels and the
correlation coe�cients in the upper triangle.

library(GGally)
ggpairs(DF)

318 CHAPTER 9. DATA VISUALIZATION

ct
y

hw
y

d
is
p
l

cty hwy displ

0.000

0.025

0.050

0.075

Corr:

0.956

Corr:

-0.799

20

30

40

Corr:

-0.766

2

3

4

5

6

7

10 15 20 25 30 35 20 30 40 2 3 4 5 6 7

We can conclude from the plot above that while highway mpg and city mpg
tend to increase together linearly, they are in inverse (non-linear) relationship to
the engine displacement volume.

9.9 Contour Plots

The most convenient way to graph a two dimensional function f(x, y) is by
graphing its equal height contours

zc = {(x, y) 2 R2 : f(x, y) = c}

9.9. CONTOUR PLOTS 319

for di↵erent values of c. To graph such a function with the ggplot2 package,
create a dataframe with columns corresponding to the x, y, and z values. The
x and y columns should feature all possible combinations of the two coordinates
over a certain grid. Then call ggplot and add the stat contour layer.

x_grid = seq(-1, 1, length.out = 100)
y_grid = x_grid
create a dataframe containing all possible combinations of x,y
R = expand.grid(x_grid, y_grid)
number of rows is 100 x 100 - one for each combination
dim(R)
[1] 10000 2
modify column names for clear axes labeling
names(R) = c('x', 'y')
R$z = R$xˆ2 + R$yˆ2
head(R)
x y z
1 -1.0000000 -1 2.000000
2 -0.9797980 -1 1.960004
3 -0.9595960 -1 1.920824
4 -0.9393939 -1 1.882461
5 -0.9191919 -1 1.844914
6 -0.8989899 -1 1.808183
ggplot(R, aes(x = x,y = y, z = z)) + stat_contour()

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

x

y

320 CHAPTER 9. DATA VISUALIZATION

9.10 Quantiles and Box Plots

Histograms are very useful for summarizing numeric data in that they show the
rough distribution of values. An alternative that is often used in conjunction with
the histogram is the box plot. We start with describing the notion of percentiles
that plays a central role in our discussion.

The r-percentile of a numeric dataset is the point at which approximately r

percent of the data lie underneath, and approximately 100�r percent lie above1.
Another name for the r percentile is the 0.r quantile.

display 0 through 100 percentiles at 0.1 increments
for the dataset containing 1,2,3,4.
quantile(c(1, 2, 3, 4), seq(0, 1, length.out = 11))
0% 10% 20% 30% 40% 50% 60% 70% 80%
1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4
90% 100%
3.7 4.0

The median or 50-percentile is the point at which half of the data lies under-
neath and half above. The 25-percentile and 75 percentile are the values below
which 25% and 75% of the data lie. These points are also called the first and
third quartiles (the second quartile is the median). The interval between the
first and third quartiles is called the inter-quartile range (IQR). It is the region
covering the central 50% of the data.

The box plot is composed of a box, an inner line bisecting the box, whiskers
that extend to either side of the box, and outliers. The box denotes the IQR,
with the inner bisecting line denoting the median. The median may or may not
be in the geometric center of the box, depending on whether the distribution of
values is skewed or symmetric. The whiskers extend to the most extreme point no
further than 1.5 times the length of the IQR away from the edges of the box. Data
points outside the box and whiskers’ range are called outliers and are graphed as
separate points. Separating the outliers from the box and whiskers is useful for
avoiding a distorted viewpoint where there are a few extreme non-representative
values.

The following code graphs a box plot in R using the ggplot2 package. The
+ operator below adds the box plot geometry, flips the x, y coordinates, and
removes the y-axis label.

ggplot(mpg, aes("",hwy)) +
geom_boxplot() +
coord_flip() +
scale_x_discrete("")

1There are several di↵erent formal definitions for percentiles. Type help(quantile) for
several competing definitions that R implements.

9.10. QUANTILES AND BOX PLOTS 321

20 30 40

hwy

We conclude from this graph that the median highway mpg is around 24, with
the central 50% of the data falling within the box that spans the range from 18
to 27. There are two high outliers over 40, but otherwise the remaining data lie
within the whiskers between 12 and 37. The fact that the median line is right of
the middle of the box hints that the distribution is skewed to the right.

Contrast the box plot above with the smoothed histogram in Page 318 (center
panel). The box plot does not convey the multimodal nature of the distribution
that the histogram shows. On the other hand, it is easier to read the median and
the IQR, which show the center and central 50% range from the box plot.

It is convenient to plot several box plots side by side in order to compare
data corresponding to di↵erent values of a factor variable. We demonstrate this
by graphing below box plots of highway mpg for di↵erent classes of vehicles. We
flip the box plots horizontally using coord flip() since the text labels display
better in this case. Note that we re-order the factors of the class variable in
order to sort the box plots in order of increasing highway mpg medians. This
makes it easier to compare the di↵erent populations.

ggplot(mpg, aes(reorder(class, -hwy, median), hwy)) +
geom_boxplot() +
coord_flip() +
scale_x_discrete("class")

322 CHAPTER 9. DATA VISUALIZATION

compact

midsize

subcompact

2seater

minivan

suv

pickup

20 30 40

hwy

cl
as
s

The graph suggests the following fuel e�ciency order among vehicle classes:
pickups, SUV, minivans, 2-seaters, sub-compacts, midsizes, and compacts. The
compact and midsize categories have almost identical box and whiskers but the
compact category has a few high outliers. The spread of subcompact cars is
substantially higher than the spread in all other categories. We also note that
SUVs and two-seaters have almost disjoint values (the box and whisker ranges
are completely disjoint) leading to the observation that almost all 2-seater cars
in the survey have a higher highway mpg than SUVs.

9.11 qq-Plots

Quantile-quantile plots, also known as qq-plots, are useful for comparing two
datasets, one of which may be sampled from a certain distribution. They are
essentially scatter plots of the quantiles of one dataset vs. the quantiles of another
dataset. The shape of the scatter plot implies the following conclusions (the
proofs are straightforward applications of probability theory).

• A straight line with slope2 1 that passes through the origin implies that the
two datasets have identical quantiles, and therefore that they are sampled
from the same distribution.

2Slope 1 corresponds to 45 degrees incline from left to right.

9.11. QQ-PLOTS 323

• A straight line with slope 1 that does not pass through the origin implies
that the two datasets have distributions of similar shape and spread, but
that one is shifted with respect to the other.

• A straight line with slope di↵erent from 1 that does not pass through the
origin implies that the two datasets have distributions possessing similar
shapes but that one is translated and scaled with respect to the other.

• A non-linear S shape implies that the dataset corresponding to the x-axis
is sampled from a distribution with heavier tails than the other dataset.

• A non-linear reflected S shape implies that the dataset whose quantiles
correspond to the y-axis is drawn from a distribution having heavier tails
than the other dataset.

To compare a single dataset to a distribution we sample values from the dis-
tribution, and then display the qq-plots of the two datasets. The quantiles of the
sample drawn from the distribution are sometimes called theoretical quantiles.

For example, consider the three datasets sampled from three bell-shaped
Gaussian distributions N(0, 1), N(0, 1), and N(0, 2) (a precise definition and a
discussion of these important distributions appears in TAOD volume 1, Chapter
3). The corresponding histograms appear below.

D = data.frame(samples = c(rnorm(200, 1, 1),
rnorm(200, 0, 1),
rnorm(200, 0, 2)))

D$parameter[1:200] = 'N(1,1)';
D$parameter[201:400] = 'N(0,1)';
D$parameter[401:600] = 'N(0,2)';
qplot(samples,

facets = parameter˜.,
geom = 'histogram',
data = D)

324 CHAPTER 9. DATA VISUALIZATION

0

10

20

30

0

10

20

30

0

10

20

30

N
(0,1)

N
(0,2)

N
(1,1)

-6 -3 0 3

samples

co
u
nt

We compute below the qq-plots of these three datasets (y axis) vs. a sample
drawn from the N(0, 1) distribution (x axis).

D = data.frame(samples = c(rnorm(200, 1, 1),
rnorm(200, 0, 1),
rnorm(200, 0, 2)));

D$parameter[1:200] = 'N(1,1)';
D$parameter[201:400] = 'N(0,1)';
D$parameter[401:600] = 'N(0,2)';
ggplot(D, aes(sample = samples)) +

stat_qq() +
facet_grid(.˜parameter)

9.11. QQ-PLOTS 325

N(0,1) N(0,2) N(1,1)

-5.0

-2.5

0.0

2.5

5.0

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

theoretical

sa
m
p
le

Note how all three plots are linear, implying that the three datasets have
distributions similar in shape to the N(0, 1) distribution up to translation and
scaling. In the left panel we get a linear shape with slope 1 which passes through
the origin, since the two datasets were sampled from the same N(0, 1) distribu-
tion. In the middle panel we get a line passing through the origin but with a
steeper slope, since the data was more wide-spread than the N(0, 1) distribution.
In the right panel we get a slope 1 line that does not pass through the origin
since the two distributions have identical spread but are translated with respect
to each other.

As a final example we show the qq-plot of a sample from a N(0, 1) distribution
and a sample from a t-distribution3 with 1.5 degrees of freedom. In contrast to
the Gaussian N(0, 1) density whose tails decrease exponentially, the t density
has tails that decrease significantly slower at a polynomial rate. As a result
the two distributions have fundamentally di↵erent shapes and their quantiles are
non-linearly related.

The following graph demonstrates the shape of the densities of the two dis-
tribution and how the t-distribution has heavier tails than the Gaussian N(0, 1)
distribution.

x_grid = seq(-6, 6, length.out = 200)
R = data.frame(density = dnorm(x_grid, 0, 1))
R$tdensity = dt(x_grid, 1.5)
R$x = x_grid
ggplot(R, aes(x = x, y = density)) +

geom_area(fill = I('grey')) +
geom_line(aes(x = x, y = tdensity)) +
labs(title = "N(0,1) (shaded) and t-distribution with 1.5 dof")

3A formal definition of the t-distribution appears in TAOD volume 1, Chapter 3.

326 CHAPTER 9. DATA VISUALIZATION

0.0

0.1

0.2

0.3

0.4

-6 -3 0 3 6

x

d
en

si
ty

N(0,1) (shaded) and t-distribution with 1.5 dof

x_grid = seq(-6, 6, length.out = 200)
R = data.frame(density = dnorm(x_grid, 0, 1))
R$samples = rnorm(200, 0, 1)
pm = list(df = 1.5)
ggplot(R, aes(sample = samples)) +

stat_qq(distribution = qt, dparams = pm)

9.12. DEVICES 327

-1

0

1

2

-30 -20 -10 0 10 20 30

theoretical

sa
m
p
le

9.12 Devices

By default, R overwrites the current figure with new plots. The function call
dev.new() opens a new additional graphics windows. The ggsave function
within the ggplot2 package saves the active graphics window to a file with the
file type (pdf, postscript, jpeg) corresponding to the file name extension.

detects file-type format (PDF) from file name extension
ggsave(file = "myPlot.pdf")

To send all future graphics to a single file use one of the following functions:
postscript, pdf, xfig, bmp, png, jpeg, or tiff. It is essential to call the
function dev.off() at the end of the graphics session in order to ensure that
the graphics file is closed properly. To see a precise list of optional parameters
such as font size and compression rate refer to help(X) where X is one of the
device drivers, for example help("jpeg").

The first three drivers (postscript, pdf, xfig) maintain high-resolution
graphics using vector graphics. The resulting graphics can be zoomed in to
arbitrary precision. Among these formats, pdf is usually preferred, since it is
often smaller in file size and since it is accessible by a wide variety of programs.

328 CHAPTER 9. DATA VISUALIZATION

The latter four drivers (bmp, png, jpeg, tiff) produce raster graphics which
correspond to pixelized images with fixed resolutions. While vector graphics
is generally preferable to raster graphics due to its superior resolution, vector
graphics may produce very large files when the graphics contain many objects.
In that case a raster graphics file may be preferable due to its smaller file size.

save all future graphics to file myplots.pdf
pdf('myplots', height = 5, width = 5, pointsize = 11)
graphics plotting
qplot(...)
qplot(...)
close graphics file and return to display driver
dev.off()

9.13 Data Preparation

We emphasize in this book graphing data by first creating a dataframe with
the appropriate data and informative column names, and then calling plot,
qplot, or ggplot. This approach is better than keeping the data in an un-
annotated array, graphing the values, and then labeling the axes, legends, and
facets appropriately. In the examples above we usually started with a ready-made
dataframe, but in most data analysis cases the dataframe has to be prepared by
the data analyst.

To create a dataframe use the data.frame function, for example:

R = data.frame(name = vec1, ages = vec2, salary = vec3).

If a dataframe already exists, but the variable names are not coherent, change
the names using the names function to coherent names so that legible axes and
legends can be automatically created.

names(R) = c("last.name", "age", "annual.income")

The functions rbind and cbind add additional rows or columns to an ex-
isting dataframe.

Consider the following example of graphing the line plots of the Gaussian
density function (see TAOD volume 1, Chapter 3)

f(x) = N(x ; 0,�) = exp(�x

2
/(2�2))/(

p
2⇡�2)

with the color and line type corresponding to the value of � among four di↵erent
values: 1, 2, 3, and 4. Note that this function is also Kh(x) for the Gaussian
kernel described earlier in this chapter.

Our strategy is to first compute a list of four vectors containing y values —
one vector for each value of �. The names of the four list elements identify the

9.13. DATA PREPARATION 329

� corresponding to that element. We then use the stack function to create the
dataframe.

The following code helps illustrate the idea before we move on to the complete
example below.

A = list(a = c(1, 2), b = c(3, 4), c = c(5, 6))
A
$a
[1] 1 2
##
$b
[1] 3 4
##
$c
[1] 5 6
stack(A)
values ind
1 1 a
2 2 a
3 3 b
4 4 b
5 5 c
6 6 c

The dataframe above is ready for graphing. The first column contains the
values of the variable that is being visualized, and the second column contains a
variable that is used to distinguish di↵erent graphs using overlays or facets.

The code below provides a complete example.

x_grid = seq(-8, 8, length.out = 100)
gaussian_function = function(x, s) exp(-xˆ2/(2*sˆ2))/(sqrt(2*pi)*s)
R = stack(list('sigma=1' = gaussian_function(x_grid, 1),

'sigma=2' = gaussian_function(x_grid, 2),
'sigma=3' = gaussian_function(x_grid, 3),
'sigma=4' = gaussian_function(x_grid, 4)))

names(R) = c("y", "sigma");
R$x = x_grid
head(R)
y sigma x
1 5.052271e-15 sigma=1 -8.000000
2 1.816883e-14 sigma=1 -7.838384
3 6.365366e-14 sigma=1 -7.676768
4 2.172582e-13 sigma=1 -7.515152
5 7.224128e-13 sigma=1 -7.353535
6 2.340189e-12 sigma=1 -7.191919
qplot(x,

y,
color = sigma,

330 CHAPTER 9. DATA VISUALIZATION

lty = sigma,
geom = "line",
data = R,
main = "Normal density for different sigma values",
xlab = "x",
ylab = "$f(x)$")

0.0

0.1

0.2

0.3

0.4

-5 0 5

x

f
(x
)

sigma

sigma=1

sigma=2

sigma=3

sigma=4

Normal density for di↵erent sigma values

9.14 Python’s Matplotlib Module

Despite the fact that R has excellent graphics capabilities it is sometimes desirable
to graph data in another programming language. For example, if the entire data
analysis process is in Python, it may make sense to graph the data within Python
rather than save the data in Python, load it in R, and graph it in R. We describe
below matplotlib – a popular Python module for graphing data. Matplotlib
features two interfaces: (a) the default object oriented programmatic interface,
and (b) pylab - a Matlab-like interface. We focus below on pylab as it is simpler
and it may be familiar to readers previously exposed to Matlab. To get access to
pylab’s API start the interactive IPython program using the command ipython
--pylab.

9.14.1 Figures

The function figure opens a new figure and returns an object that may be
used to display graphs in that figure. Multiple figure functions may be issued,
and by default the figure that was opened last is the active figure. The function
close(X) closes figure X (or by default the active figure if the argument is

9.14. PYTHON’S MATPLOTLIB MODULE 331

omitted). The function savefigX saves the active figure to a file whose filename
is X (the file type is inferred from the filename extension). For example, the
following code opens up two figures, saves the second figure and closes it, and
then saves and closes the first figure.

import matplotlib.pyplot as plt
f1 = plt.figure() # open a figure
f2 = plt.figure() # open a second figure
plt.savefig('f2.pdf') # save fig 2 - the active figure
plt.close(f2)
plt.savefig('f1.pdf') # save fig 2 - the active figure
plt.close(f1)

9.14.2 Scatter-plots, Line-plots, and Histograms

The function plot(x,y) displays a scatter plot of the two arrays x and y, and
connects the scatter plot points with lines.

An optional third argument for plot is a string containing the color code,
followed by marker code that is in turn followed by line-style code. For example
the string ’ro--’ corresponds to color red, circular scatter plot markers, and
dashed line. If some of these patterns are omitted the default choice is selected.
Omitting the scatter plot markers pattern creates a line plot, for example ’r--’
creates a red line plot. Omitting the line-style pattern creates a scatter plot, for
example ’ro’ creates a red scatter plot. Multiple consecutive plot functions add
additional features to the current figure.

The functions xlabel, ylabel, and title annotates the x-axis, the y-axis
and the figure. As in the R examples we can use LaTeX code (text surrounded
by $ symbols in the example below) to annotate the axes labels or titles with
equations.

The range of values displayed in the x-axis and y-axis can be modified us-
ing the function xlim([min x, max x]) and ylim([min y, max y]) func-
tions.

The code below displays three line plots - linear (black solid line), quadratic
(black dashed line), and cubic (black dotted line). Since the scatter plot marks
patterns are omitted, we get line plots without the scatter plot corresponding to
the sampled points.

import matplotlib.pyplot as plt
x_grid = array(range(1, 100)) / 30.0
plt.figure() # open a figure
plt.plot(x_grid, x_grid, 'k-') # adds f(x)=x as dashed
plt.plot(x_grid, x_grid ** 2, 'k--') # draws f(x)=xˆ2 as solid line
plt.plot(x_grid, x_grid ** 3, 'k.') # draws f(x)=xˆ2 as solid line
plt.xlabel(r'x')
plt.ylabel(r'$y=f(x)$')
ttl='linear (solid), quadratic (dashed), and cubic (dotted) growth'

332 CHAPTER 9. DATA VISUALIZATION

plt.title(ttl)

The function hist(x,n) creates a histogram of the data in x using n bins.

import matplotlib.pyplot as plt
data = randn(10000)
hist(data, 50)
plt.xlabel(r'x')
plt.ylabel(r'$count$')
plt.title('histogram of 10000 Gaussian N(0,1) samples')
plt.xlim([-4, 4])

9.14. PYTHON’S MATPLOTLIB MODULE 333

9.14.3 Contour Plots and Surface Plots

Matplotlib can also graph three dimensional data. We describe below how to
create contour plots and surface plots - the two most common 3-D graphs.

To create a contour plot or surface plot of a function f = (x, y), we need
to first create two one dimensional grids corresponding to the values of x and
y. The function numpy.meshgrid takes these two one dimensional grids and
returns two two dimensional ndarrays containing the x and y values (the first
ndarray has constant columns and the second ndarray has constant rows). We
can then create a third ndarray holding the values of z = f(x, y) by operating a
two dimensional function on the two ndarrays.

The function contourf displays z = f(x, y) as a function of x, y, quantizing
the z values into several constant values. The code below shows how to use
contourf to display a contour plot of the function z = 3x2 + 5y2.

import numpy as np
import matplotlib.pyplot as plt
def f(x, y): return (3*x**2 + 5*y**2)
x_grid = np.linspace(-2, 2, 100)
y_grid = np.linspace(-2, 2, 100)
create two ndarrays xx, yy containing x and y coordinates
xx, yy = np.meshgrid(x_grid, y_grid)
zz = f(xx, yy)
draw contour graph with 6 levels using gray colormap
(white=high, black=low)

334 CHAPTER 9. DATA VISUALIZATION

plt.contourf(xx,
yy,
zz,
6,
cmap = 'gray')

add black lines to highlight contours levels
plt.contour(xx,

yy,
zz,
6,
colors = 'black',
linewidth = .5)

The function plot surface is similar to contourf except that it displays a
3-D surface plot. The code below shows how to use it. Note that before creating
a 3-D plot we need to create a 3-D axis object using the function Axes3D in
mpl toolkits.mplot3d.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def f(x, y): return (3*x**2 + 5*y**2)
x_grid = np.linspace(-2, 2, 30)
y_grid = np.linspace(-2, 2, 30)
xx, yy = np.meshgrid(x_grid, y_grid)
zz = f(xx, yy)
surf_figure = plt.figure()

9.15. NOTES 335

figure_axes = Axes3D(surf_figure)
figure_axes.plot_surface(xx,

yy,
zz,
rstride = 1,
cstride = 1,
cmap = 'gray')

9.15 Notes

Refer to the o�cial R manual at http://cran.r-project.org/doc/manuals/R-intro.html
(replace html with pdf for pdf version) and the language reference at
http://cran.r-project.org/doc/manuals/R-lang.html (replace html with pdf for
pdf version) for more information on R graphics. Detailed information on the
ggplot2 package appears in [29] or on the website http://had.co.nz/ggplot2/. A
comprehensive description of the grammar of graphics which is the basis of the
ggplot2 package is available in [31]. Two useful books on how to construct useful
graphs are [3, 4]. A classic book on exploratory data analysis is [27].

The package lattice [22] is a popular alternative to graphics and ggplot2.
It often creates graphs faster than ggplot2, but its syntax is less intuitive. Many
other R packages feature graphics functions for specialized data such as time
series, financial data, or geographic maps. A useful resource for exploring such
packages is the Task Views http://cran.r-project.org/web/views/.

Python’s matplotlib can display additional types of graphs, including bar

336 CHAPTER 9. DATA VISUALIZATION

charts, two dimensional scatter plots, three dimensional surface plots. See http://matplotlib.org
for details. Python’s pandas module has some graphics functionality that is use-
ful for graphing dataframes. See http://pandas.pydata.org for details. Python
also has additional graphics module for specialized graphics, such as interactive
graphics.

9.16 Exercises

1. Using the mpg data, describe the relationship between highway mpg and
car manufacturer. Describe which companies produce the most and least
fuel e�cient cars, and display a graph supporting your conclusion.

2. Using the mpg data, explore the three-way relationship between highway
mpg, city mpg, and model class. What are your observations? Display a
graph supporting these observations.

3. What are the pros and cons of using a histogram vs a box plot? Which one
will you prefer for what purpose?

4. Generate two sets of N random points using the function runif and dis-
play a corresponding scatter plot. If you save the file to disk, what is the
resulting file size for the following file formats: ps, pdf, jpeg, png? How do
these values scale with increasing N?

5. The diamonds dataset within ggplot2 contains 10 columns (price, carat,
cut, color, etc.) for 53940 di↵erent diamonds. Type help(diamonds) for
more information. Plot histograms for color, carat, and price, and comment
on their shapes. Investigate the three-way relationship between price, carat,
and cut. What are your conclusions? Provide graphs that support your
conclusions. If you encounter computational di�culties, consider using a
smaller dataframe whose rows are sampled from the original diamonds
dataframe. Use the function sample to create a subset of indices that
may be used to create the smaller dataframe.

