
Chapter 11

Data Processing

In many cases, data is available in a form that makes its analysis inconvenient.
Some frequent situations are listed below.

Missing data. Some of the measurements are not available due to data corrup-
tion or di�culty in obtaining the data.

Outliers. Some of the measurements are highly atypical of the data distribution.

Skewed data. The data is highly skewed making its visualization and analysis
di�cult.

In the first three sections we discuss such situations and how to handle them.
In the final section we discuss how to manipulate data in general, and specifically
how to manipulate data in R, using the reshape2 and plyr packages and in
Python using the pandas module.

11.1 Missing Data

Data may be missing for a variety of reasons. Perhaps it was corrupted during its
transfer or storage. Perhaps some instances in the data collection process were
skipped due to di�culty or price associated with obtaining the data. Or perhaps
the data was simply unavailable for some other reason.

Denoting n data instances by x

(i)
, i = 1, . . . , n (corresponding for example

to dataframe rows), missing data implies that for each i = 1, . . . , n we have a
set Ai ⇢ {1, . . . , n} of indices for which the measurements are missing (A may
potentially be the empty set in which case no data is missing). In other words,

x

(i)
j (the j variable of the i sample) is missing if j 2 Ai.
Missing data is a general phenomenon. A few specific examples appear below.

• Recommendation systems recommend to users items from a catalog based
on historical user rating. Often, there are a lot of items in the catalog and

371

372 CHAPTER 11. DATA PROCESSING

each user typically indicates their preference on only a small subset of them
(for example by assigning 1-5 stars to previously seen movies).

• In longitudinal studies some of the subjects may not be able to attend each
of the surveys throughout the study period. The study organizers may also
have lost contact with some of the subjects, in which case all measurements
beyond a certain time point are missing.

• In sensor data, some of the measurements may be missing due to sensor
failure, battery discharge, or electrical interference.

• In user surveys, users may choose to not respond to some of the questions
for privacy reasons.

If the probability of an observation being missing does not depend on observed
or unobserved measurements we say that it is missing completely at random
(MCAR). For example, in the case of users rating movies using 1-5 stars, we
consider ratings of specific movies as dataframe columns and ratings associated
with specific users as dataframe rows. Since some movies are more popular than
others, the probability of missingness depends on the movie title as well as the
movie rating, which violates the MCAR definition.

A more relaxed concept is data missing at random (MAR). This occurs when
given the observed data, the probability that data is missing does not depend
on the unobserved data. Consider, for example, a survey recording gender, race,
and income. Out of the three questions, gender and race are not very objection-
able questions, so we assume for now that the survey respondents answer these
questions fully. The income question is more sensitive and users may choose to
not respond to for privacy reasons. The tendency to report income or to not re-
port income typically varies from person to person. If it only depends on gender
and race, then the data is MAR. If the decision whether to report income or not
depends also on other variables that are not in the dataframe (such as age or
profession), the data is not MAR.

Some data analysis techniques are specifically designed to allow for missing
data. In general, however, most methods are designed to work with fully observed
data. Below are some general ways to convert missing data to non-missing data.

• Remove all data instances (for example dataframe rows) containing missing
values.

• Replace all missing entries with a substitute value, for example the mean
of the observed instances of the missing variable.

• Estimate a probability model for the missing variable and replace the miss-
ing value with one or more samples from that probability model.

In the case of MCAR, all three techniques above are reasonable in that they
may not introduce systematic errors. In the more likely case of MAR or non-MAR
data the methods above may introduce systematic bias into the data analysis
process.

11.1. MISSING DATA 373

11.1.1 Missing Data in R

R represents missing data using the NA symbol which stands for not available.
This is di↵erent from impossible values, represented by NaN (not a number). The
function is.na returns a data structure having TRUE values where the corre-
sponding data is missing and FALSE otherwise. The function complete.cases
returns a vector whose components are FALSE for all samples (dataframe rows)
containing missing values and TRUE otherwise. The function na.omit returns a
new dataframe omitting all samples (dataframe rows) containing missing values.

Many data analysis functions fail on data containing missing values and sim-
ply return NA value. This is intended as a warning to the programmer that the
data contains missing values. Some functions have an na.rm argument, which if
set to TRUE changes the function behavior so that it proceeds to operate on the
supplied data after removing all dataframe rows with missing values.

The code below analyzes the dataframe movies in the ggplot2movies
package, which contains 24 attributes (genre, year, budget, user ratings, etc.) for
58788 movies obtained from the website http://www.imdb.com with some miss-
ing values. Type help(movies) after loading the package ggplot2movies
for more information.

library(ggplot2movies)
names(movies)
[1] "title" "year"
[3] "length" "budget"
[5] "rating" "votes"
[7] "r1" "r2"
[9] "r3" "r4"
[11] "r5" "r6"
[13] "r7" "r8"
[15] "r9" "r10"
[17] "mpaa" "Action"
[19] "Animation" "Comedy"
[21] "Drama" "Documentary"
[23] "Romance" "Short"
display 20 rows, 6 first columns
movies[9000:9020, 1:6]
title year
9000 Cat People 1982
9001 Cat Swallows Parakeet and Speaks! 1996
9002 Cat That Hated People, The 1948
9003 Cat and Dupli-cat 1967
9004 Cat and the Canary, The 1927
9005 Cat and the Canary, The 1939
9006 Cat and the Canary, The 1979
9007 Cat and the Fiddle, The 1934
9008 Cat and the Mermouse, The 1949
9009 Cat from Outer Space, The 1978
9010 Cat in the Cage 1978

374 CHAPTER 11. DATA PROCESSING

9011 Cat in the Hat, The 2003
9012 Cat on a Hot Tin Roof 1958
9013 Cat with Hands, The 2001
9014 Cat's Bad Hair Day 2004
9015 Cat's Cradle 1959
9016 Cat's Eye 1985
9017 Cat's Eye 1997
9018 Cat's Me-Ouch, The 1965
9019 Cat's Meow, The 2001
9020 Cat's Out, The 1931
length budget rating votes
9000 118 18000000 5.8 2862
9001 76 NA 5.7 7
9002 8 NA 7.9 75
9003 7 NA 6.5 24
9004 82 NA 7.2 178
9005 72 NA 7.6 216
9006 89 NA 5.3 156
9007 88 NA 6.8 52
9008 8 NA 7.0 40
9009 104 NA 5.2 583
9010 98 NA 2.7 22
9011 82 109000000 3.2 4997
9012 108 3000000 7.8 4870
9013 4 NA 7.9 92
9014 15 NA 8.3 7
9015 6 NA 6.3 57
9016 94 7000000 5.7 2301
9017 91 NA 4.8 30
9018 6 NA 6.6 26
9019 114 NA 6.5 2195
9020 7 NA 8.9 7
mean(movies$length)
[1] 82.33788
mean(movies$budget)
[1] NA
mean(movies$budget, na.rm = TRUE)
[1] 13412513
mean(is.na(movies$budget))
[1] 0.9112914

Below, we create a new dataframe that is identical to the movies dataframe
with the exception that rows with missing values are removed. Then, we graph
movie budget vs. average movie rating to examine the relationship between the
two variables. The red line below is a smoothing curve showing the average
tendency (see Section 10.8 for more details).

11.1. MISSING DATA 375

moviesNoNA = na.omit(movies)
qplot(rating, budget, data = moviesNoNA, size = I(1.2)) +

stat_smooth(color = "red", size = I(2), se = F)

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5 5.0 7.5 10.0

rating

b
u
d
ge
t

The graph above shows that there is a high variation in budget, but the
general trend is that budget increases with ratings up to a certain point (around
6) and then it decreases. Apparently, high budget movies tend to have decent
average IMDB ratings in the range of 5-7.5. The lowest ratings and surprisingly
the highest ratings tend to be associated with low-budget movies.

Below we graph total number of IMDB votes vs. average movie rating.

moviesNoNA = na.omit(movies)
qplot(rating, votes, data = moviesNoNA, size = I(1.2))

376 CHAPTER 11. DATA PROCESSING

0

50000

100000

150000

2.5 5.0 7.5 10.0

rating

vo
te
s

The figure above shows that the number of votes (which can be used as a
surrogate for popularity) tend to increase as the average rating increase. We
also see that the spread in the number of votes increases with the average rating.
Finally, it is surprising that the movies featuring the highest average ratings have
a very small number of votes. A possible explanation is that when there are only
a few votes it is easier to reach very high (or low) average ratings. Consider
for example an extreme case where a minor movie is given very high votes by a
small circle of fans. In the case of a blockbuster movie with thousands of ratings,
opinions vary more and it is much harder to maintain a very high average rating.

When interpreting the graphs above, we should also consider the fact that
users tend to see movies that they think they will like, and thus the observed rat-
ings tend to be higher than ratings gathered after showing users random movies.

11.1.2 Missing Data in Python

The pandas module in Python provides support for dataframes with missing
values. Specifically, NaN is used to represent missing values in both floating
point and non-floating point arrays. In addition, the value None can also be
used to represent missing values in arrays containing objects.

Pandas provides the following functions for handling missing values: isnull
returns a boolean array marking whether entries are missing or not; notnull
returns the boolean negation of isnull; dropna drops rows or columns con-
taining missing values; filna fills-in missing values.

The code below defines a small dataframe with missing values, and demon-
strates the isnull method.

import numpy as np
import pandas as pd

11.1. MISSING DATA 377

data = pd.DataFrame([[1, 2, np.nan],
[3, np.nan, 4],
[1, 2, 3]])

print("D:\n" + str(data))
print("pd.isnull(D):\n" + str(pd.isnull(data)))
D:
0 1 2
0 1 2.0 NaN
1 3 NaN 4.0
2 1 2.0 3.0
pd.isnull(D):
0 1 2
0 False False True
1 False True False
2 False False False

The code below demonstrates the dropna method.

import numpy as np
import pandas as pd
data = pd.DataFrame([[1, 2, np.nan],

[3, np.nan, 4],
[1, 2, 3]])

drop rows
print("data.dropna():\n" + str(data.dropna()))
drop columns
print("data.dropna(axis = 1):\n" + str(data.dropna(axis = 1)))
data.dropna():
0 1 2
2 1 2.0 3.0
data.dropna(axis = 1):
0
0 1
1 3
2 1

Above, we used the optional axis argument to drop columns instead of rows.
The optional thresh argument can be used so that only rows (or columns) with
more than a certain number of observations will be retained.

Calling the fillna function with a numeric argument replaces missing en-
tries with that value. Passing an optional dict object that maps column indices
to values replaces missing entries with column-specific constants. Alternatively,
the dict object can be replaced with an array containing column specific fill-
in values. By default, fillna returns a new dataframe with filled-in values
and does not modify the original dataframe. The optional boolean argument
inplace can be used to modify that behavior such that the original dataframe
is modified.

378 CHAPTER 11. DATA PROCESSING

import numpy as np
import pandas as pd
data = pd.DataFrame([[1, 2, np.nan],

[3, np.nan, 4],
[1, 2, 3]])

print("data:\n" + str(data))
fill-in missing entries with column means
print("data.fillna(data.mean()):\n" + str(data.fillna(data.mean())))
data:
0 1 2
0 1 2.0 NaN
1 3 NaN 4.0
2 1 2.0 3.0
data.fillna(data.mean()):
0 1 2
0 1 2.0 3.5
1 3 2.0 4.0
2 1 2.0 3.0

Many dataframe functions contain an optional fill value argument that
can be used to fill-in missing values during the operation of the function.

11.2 Outliers

There are two di↵erent definitions for outliers. The first considers outliers as
corrupted values. That is the case, for example, with human errors during a
manual process of entering measurements in a spreadsheet. The second definition
considers outliers to be non-corrupt values, but nevertheless are substantially
unlikely given our modeling assumptions.

Data analysis based on outliers may result in drastically wrong conclusions.
This is pretty clear in the case of corrupted outliers. But it may also be the case
with the second definition of outliers, especially when the model used in the data
analysis does not account for the extreme observations.

An example for the second outlier definition is the Black Monday stock crash
on October 19, 1987, when the Dow Jones Industrial Average lost 22% in one
day. The graphs below plot the histogram of log-returns and then the log-returns
of the S&P 500 stock index between 1981 and 1991. Log returns is the quantity
log(Pt/Pt�1), where Pt is the S&P 500 index on day t. A log return close to 0
(return close to 1) indicates no or little daily movement in the index price.

library(Ecdat)
data(SP500, package = 'Ecdat')
qplot(r500,

main = "Histogram of log(P(t)/P(t-1)) for SP500 (1981-91)",
xlab = "log returns",
data = SP500)

11.2. OUTLIERS 379

0

500

1000

-0.2 -0.1 0.0 0.1

log returns

co
u
nt

Histogram of log(P(t)/P(t-1)) for SP500 (1981-91)

qplot(seq(along = r500),
r500,
data = SP500,
geom = "line",
xlab = "trading days since January 1981",
ylab = "log returns",
main = "log(P(t)/P(t-1)) for SP500 (1981-91)")

-0.2

-0.1

0.0

0.1

0 1000 2000

trading days since January 1981

lo
g
re
tu
rn
s

log(P(t)/P(t-1)) for SP500 (1981-91)

Note how the sharp Black Monday decline barely registers in the histogram
of log-returns, but is clearly visible in the log-return graph.

380 CHAPTER 11. DATA PROCESSING

Some models are sensitive to outliers and building such models based on
data with outliers can lead to drastically inaccurate predictions. On the other
hand, removing outliers is tricky as the resulting model may conclude that future
outliers are unlikely to occur.

Robustness describes a lack of sensitivity of data analysis procedures to out-
liers. An example for a non-robust procedure is computing the mean of n num-
bers. Assuming a symmetric distribution of samples around 0, we expect the
mean to be zero, or at least close to it. But, the presence of a single outlier
(very positive value or very negative value) may substantially a↵ect the mean
calculation and drive it far away from zero, even for large n.

An example for a robust data analysis procedure is the median, which will
not be a↵ected by a single outlier even if it has extreme value. We illustrate this
with a hypothetical data of n + 1 values {x(1)

, . . . , x

(n)
, e}, with median b and

mean a. The value e > max(x(1)
, . . . , x

(n)) is a single high-valued outlier. Fixing
the n observations and increasing e to infinity the median will remain constant at
b, while the mean would grow to infinity together with the median. This happens
regardless of the value of n. In other words, no matter the size of the dataset, a
single extreme outlier will a↵ect the mean in a substantial way but will not a↵ect
the median.

Three popular techniques for dealing with outliers are listed below.

Truncating. Remove all values deemed as outliers.

Winsorization. Shrink outliers to border of main part of data. One special
case of this is to replace outliers with the most extreme of the remaining
values.

Robustness. Analyze the data using a robust procedure.

We assume below that a value is considered an outlier if it is below the ↵

percentile or above the 100� ↵ percentile for some small ↵ > 0. In many cases,
we assume that the data follows a symmetric distribution, in which case the rule
above corresponds to being more than c standard deviations away from the mean.
The problem is that since the data contains outliers, the estimates of standard
deviation or percentiles based on that data is likely to be corrupted as well. This
chicken-and-egg problem can be sidelined by computing the standard deviation
or percentiles after removing the most extreme values.

The R code below removes outliers. We sample values from a Gaussian dis-
tribution and then overwrite the first entry with a single outlier. We then sort
the data, exclude the smallest and largest values, compute the standard devia-
tion, and remove the values beyond a certain multiple of the standard deviation
values.

original_data = rnorm(20)
original_data[1] = 1000
sorted_data = sort(original_data)
filtered_data = original_data[3:18]

11.3. DATA TRANSFORMATIONS 381

lower_limit = mean(filtered_data) - 5 * sd(filtered_data)
upper_limit = mean(filtered_data) + 5 * sd(filtered_data)
not_outlier_ind = (lower_limit < original_data) &

(original_data < upper_limit)
print(not_outlier_ind)
[1] FALSE TRUE TRUE TRUE TRUE TRUE
[7] TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE
[19] TRUE TRUE
data_w_no_outliers = original_data[not_outlier_ind]

The R code below winsorizes data containing an outlier. It uses the function
winsorize from the robustHD package.

library(robustHD)
original_data = c(1000, rnorm(10))
print(original_data)
[1] 1000.0000000 -0.2925366 1.8952183
[4] 0.2895131 0.2843515 -0.5394700
[7] -0.2802351 -0.8678683 0.1259644
[10] 0.6260071 -0.3043207
print(winsorize(original_data))
[1] 1.4018458 -0.2925366 1.4018458
[4] 0.2895131 0.2843515 -0.5394700
[7] -0.2802351 -0.8678683 0.1259644
[10] 0.6260071 -0.3043207

11.3 Data Transformations

11.3.1 Skewness and Power Transformation

In many cases, data is drawn from a highly-skewed distribution that is not well
described by one of the common statistical distributions. In some of these cases,
a simple transformation may map the data to a form that is well described by
common distributions, such as the Gaussian or Gamma distributions (see TAOD
volume 1, Chapter 3). A suitable model can then be fitted to the transformed
data (if necessary, predictions can be made on the original scale by inverting the
transformation).

Power transformations are a family of data transformations for non-negative
values (parameterized by � 2 R), defined as follows.

f�(x) =

8
><

>:

(x� � 1)/� � > 0

log x � = 0

�(x� � 1)/� � < 0

x > 0, � 2 R. (11.1)

382 CHAPTER 11. DATA PROCESSING

The reason for the algebraic form (x� � 1)/� rather than the simpler x

� is
that the former choice makes f�(x) continuous in � as well as in x. The minus
sign in the last case ensures that the transformation does not re-order the data
points (taking negative powers reverses ordering).

The power transformations can also be used to transform negative data by
adding a number large enough so all values are non-negative and then proceeding
according to the definition above (11.1).

Intuitively, the power transform maps x to x

�, up to multiplication by a
constant and addition of a constant. This mapping is convex for � > 1 and
concave for � < 1. A choice of � < 1 removes right-skewness (data has a heavy
tail to the right) with smaller values of � resulting in a more aggressive removal
of skewness. Similarly, a choice of � > 1 removes left-skewness.

One way to select � is to try di↵erent values, graph the resulting histograms,
and select one of them. There are also more sophisticated methods for selecting
� based on the maximum likelihood method.

In the example below, we consider the diamonds data from the gpplot2
package, which contains several attributes (cut, carat, price, color, etc.) for
53,940 diamonds.

head(diamonds)
carat cut color clarity depth table
1 0.23 Ideal E SI2 61.5 55
2 0.21 Premium E SI1 59.8 61
3 0.23 Good E VS1 56.9 65
4 0.29 Premium I VS2 62.4 58
5 0.31 Good J SI2 63.3 58
6 0.24 Very Good J VVS2 62.8 57
price x y z
1 326 3.95 3.98 2.43
2 326 3.89 3.84 2.31
3 327 4.05 4.07 2.31
4 334 4.20 4.23 2.63
5 335 4.34 4.35 2.75
6 336 3.94 3.96 2.48
summary(diamonds)
carat cut
Min. :0.2000 Fair : 1610
1st Qu.:0.4000 Good : 4906
Median :0.7000 Very Good:12082
Mean :0.7979 Premium :13791
3rd Qu.:1.0400 Ideal :21551
Max. :5.0100
##
color clarity depth
D: 6775 SI1 :13065 Min. :43.00
E: 9797 VS2 :12258 1st Qu.:61.00
F: 9542 SI2 : 9194 Median :61.80
G:11292 VS1 : 8171 Mean :61.75

11.3. DATA TRANSFORMATIONS 383

H: 8304 VVS2 : 5066 3rd Qu.:62.50
I: 5422 VVS1 : 3655 Max. :79.00
J: 2808 (Other): 2531
table price
Min. :43.00 Min. : 326
1st Qu.:56.00 1st Qu.: 950
Median :57.00 Median : 2401
Mean :57.46 Mean : 3933
3rd Qu.:59.00 3rd Qu.: 5324
Max. :95.00 Max. :18823
##
x y
Min. : 0.000 Min. : 0.000
1st Qu.: 4.710 1st Qu.: 4.720
Median : 5.700 Median : 5.710
Mean : 5.731 Mean : 5.735
3rd Qu.: 6.540 3rd Qu.: 6.540
Max. :10.740 Max. :58.900
##
z
Min. : 0.000
1st Qu.: 2.910
Median : 3.530
Mean : 3.539
3rd Qu.: 4.040
Max. :31.800
##

We graph the price histogram of a random subset of 1000 diamonds, obtained
by sampling rows from the original dataframe.

diamondsSubset = diamonds[sample(dim(diamonds)[1], 1000),]
qplot(price, data = diamondsSubset)

384 CHAPTER 11. DATA PROCESSING

0

50

100

150

200

0 5000 10000 15000

price

co
u
nt

The histogram above is skewed to the right and is not very informative. On
the other hand, the transformed histogram below reveals an interesting multi-
modal distribution in the log-scale.

qplot(log(price), size = I(1), data = diamondsSubset)

0

20

40

60

6 7 8 9 10

log(price)

co
u
nt

Power transformations are useful also for examining the relationship between
two or more data variables. The following plot shows the relationship between
diamond price and diamond carat (weight). It is hard to draw much information
from that plot beyond the fact that there is a non-linear increasing trend. Trans-

11.3. DATA TRANSFORMATIONS 385

forming both variables using a logarithm shows a striking linear relationship on
a log-log scale.

qplot(carat,
price,
size = I(1),
data = diamondsSubset)

0

5000

10000

15000

1 2 3

carat

p
ri
ce

qplot(carat,
log(price),
size = I(1),
data = diamondsSubset)

386 CHAPTER 11. DATA PROCESSING

6

7

8

9

10

1 2 3

carat

lo
g(
p
ri
ce
)

qplot(log(carat),
price,
size = I(1),
data = diamondsSubset)

0

5000

10000

15000

-1 0 1

log(carat)

p
ri
ce

qplot(log(carat),
log(price),
size = I(1),
data = diamondsSubset)

11.3. DATA TRANSFORMATIONS 387

6

7

8

9

10

-1 0 1

log(carat)

lo
g(
p
ri
ce
)

It is sometimes more readable to display the original un-transformed variables
on logarithmic axes.

qplot(carat,
price,
log = "xy",
size = I(1),
data = diamondsSubset)

1000

10000

1

carat

p
ri
ce

In another example we analyze the Animals dataset from the MASS package.
This dataset contains brain weight (in grams) and body weight (in kilograms)

388 CHAPTER 11. DATA PROCESSING

for 28 di↵erent animal species.

The three largest animals are dinosaurs, whose measurements are obviously
the result of scientific modeling rather than precise measurements.

library(MASS)
Animals
body brain
Mountain beaver 1.350 8.1
Cow 465.000 423.0
Grey wolf 36.330 119.5
Goat 27.660 115.0
Guinea pig 1.040 5.5
Dipliodocus 11700.000 50.0
Asian elephant 2547.000 4603.0
Donkey 187.100 419.0
Horse 521.000 655.0
Potar monkey 10.000 115.0
Cat 3.300 25.6
Giraffe 529.000 680.0
Gorilla 207.000 406.0
Human 62.000 1320.0
African elephant 6654.000 5712.0
Triceratops 9400.000 70.0
Rhesus monkey 6.800 179.0
Kangaroo 35.000 56.0
Golden hamster 0.120 1.0
Mouse 0.023 0.4
Rabbit 2.500 12.1
Sheep 55.500 175.0
Jaguar 100.000 157.0
Chimpanzee 52.160 440.0
Rat 0.280 1.9
Brachiosaurus 87000.000 154.5
Mole 0.122 3.0
Pig 192.000 180.0
qplot(brain, body, data = Animals)

11.3. DATA TRANSFORMATIONS 389

0

25000

50000

75000

0 2000 4000

brain

b
od

y

The scatter plot above is hard to comprehend. Transforming both quantities
by a power transformation reveals interesting linear trend on the log-log scale for
most animals, excluding the three dinosaurs.

qplot(brain, body, log = "xy", data = Animals)

1

100

10000

10 1000

brain

b
od

y

The log-log plot shows a clear cluster of outliers corresponding to the di-
nosaurs. Apparently, either dinosaurs had a substantially di↵erent brain to body
weight relationship than contemporary animals, or the estimates are based on
flawed models.

390 CHAPTER 11. DATA PROCESSING

11.3.2 Binning

Below, we discuss representing three di↵erent types of variables: numeric, ordinal,
and categorical, and computing with them.

• A numeric variable represents real valued measurements, and whose values
are ordered in a manner consistent with the natural ordering of the real
line. We further expect that the dissimilarity between two measurements
a, b is described by the Euclidean distance |b� a|. For example, height and
weight are numeric variables.

• An ordinal variable represents measurements in a certain range R for which
we have a well defined order relation. Numeric variables are special cases
of ordinal variables. For example, the seasons of the year are ordinal mea-
surements.

• A categorical variable represents measurements that do not satisfy the or-
dinal or numeric assumption. For example, food items on a restaurant’s
menu are categorical variables.

The distinction above refers to the essence of the variable rather than how it
is stored. For example, we may store categorical measurement corresponding to
the fruits {apple, orange, banana} using the values {0, 1, 2}.

The process of binning (also known as discretization) refers to taking a nu-
meric variable x 2 R (typically a real value, though it may be an integer), dividing
its range into several bins, and replacing it with a number representing the cor-
responding bin. Binning is closely related to rounding and in fact all numbers
represented digitally are already discretized (see Chapter 1). However, it is often
useful to bin values in order to accomplish data reduction, improve scalability for
big-data, or capture non-linear e↵ects in linear models. A special case of binning
is binarization, which replaces a variable with either 0 or 1 depending on whether
the variable is greater or smaller than a certain threshold.

For example, suppose x represent the tenure of an employee (in years) and
ranges from 0 to 50. A binning process may divide the range [0, 50] into the
following ranges (0, 10], (10, 20], . . . , (41, 50] and use corresponding replacement
values of 5, 15, . . . , 45 respectively. The notation (a, b] corresponds to all values
larger than a and smaller or equal to b.

The code below shows how to discretize a variable in Python using the cut
function in the pandasmodule. The output of the cut function is an object that
has a categories field corresponding to the discretized bins, and a codes field
corresponding to the index of the bin that replaces each value in the data array.
Specifically, below we creates an array, define a list of bin ranges and replacement
values, call cut to replace the original values with the corresponding bins, and
then create another array that replaces the values of the original array with the
midpoints of the corresponding bins.

11.3. DATA TRANSFORMATIONS 391

import numpy as np
import pandas as pd
data = [23, 13, 5, 3, 41, 33]
bin_boundaries = [0, 10, 20, 30, 40 ,50]
bin_values = [5, 15, 25, 35, 45]
cut_data = pd.cut(data, bin_boundaries)
print("labels:\n" + str(cut_data.codes))
binned_data = np.zeros(shape = np.size(data))
for (k,x) in enumerate(cut_data.codes):

binned_data[k] = bin_values[x]
print("binned_data:\n" + str(binned_data))
labels:
[2 1 0 0 4 3]
binned_data:
[25. 15. 5. 5. 45. 35.]

Calling cut(data,k) for a positive integer k, uses k equal-length bins whose
coverage equals the range of the data (minimum value, maximum value). In some
cases it makes sense to select the bins adaptively, i.e., based on the distribution
of the data. The Python function qcut(data,k) is similar to cut(data, k)
except that it uses k bins with equal probability mass, where the data distribu-
tion is estimated based on the data values. For example cut(data,2) performs
binning based on two bins whose boundary is the median of the data (see Sec-
tion 10.10 for a definition of the median). Similarly, cut(data, 4) uses bins
defined by the sample quartiles. This technique is called quantile binning.

import numpy as np
import pandas as pd
original_data = [23, 13, 5, 3, 41, 33]
cut_data = pd.qcut(original_data, 2)
print("C.labels:\n" + str(cut_data.codes))
C.labels:
[1 0 0 0 1 1]

Discretization in R is similar to Python using the R cut function.

11.3.3 Indicator Variables

Indicator vectors refers to a technique that replaces a variable x (numeric, ordinal,
or categorical) taking k values with a binary k-dimensional vector v, such that
v[i] (or vi in mathematical notation) is one if and only if x takes on the i-value
in its range. Thus, the variable is replaced by a vector that is all zeros, except
for one component that equals one corresponding to the variable value. Often,
indicator variables are used in conjunction with binning as follows: first bin the
variable into k bins and then create a k dimensional indicator variable. The
resulting vector may have high dimension, but it may be easily handled using
computational routines that take advantage of its extreme sparsity.

Indicator vectors are useful in data modeling in two cases.

392 CHAPTER 11. DATA PROCESSING

1. Models for numeric or binary data cannot directly model ordinal or cate-
gorical data. For example, replacing {apple, orange, banana} with
{0, 1, 2} and using these values in a model for numeric values would incor-
rectly assume that banana is greater than orange and that the dissimilarity
between orange and apple is identical to the dissimilarity between apple
and banana. Using indicator variables can mitigate this problem.

2. In some cases a linear model is used to model numeric variables that ex-
hibit non-linear relationship. As the linearity assumption of the model is
violated, the resulting model may be inaccurate. An alternative is to first
transform the numeric values using several non-linear transformations (for
example multiple power transformations), then bin the transformed data,
and finally create indicator vectors to represent the binned values. Training
a linear models on the resulting vectors may capture complex non-linear
relationships.

3. It is often much easier to compute with indicator functions since they are
binary, and thus replacing numeric variables with indicator vectors may
improve scalability.

The Python code below defines a numeric array, bins it, and then create
indicator vectors to replace the binned values.

import numpy as np
import pandas as pd
data = [23, 13, 5, 3, 41, 33]
indicator_values = pd.get_dummies(pd.qcut(data, 2))
print("indicator_values:\n" + str(indicator_values))
indicator_values:
[3, 18] (18, 41]
0 0.0 1.0
1 1.0 0.0
2 1.0 0.0
3 1.0 0.0
4 0.0 1.0
5 0.0 1.0

In many cases, a machine learning routine accepts a single feature vector that
needs to be composed from multiple variables. A common strategy is to trans-
form all numeric variable by binning them and then creating indicator vectors
and concatenating all of them into a single long binary vector. Additional non-
numeric variables can be concatenated as well. Some variations on this strategy
is to concatenate the numeric vectors in their original form and possibly con-
catenate them with transformed versions of the numeric variables (for example
power transformations).

11.4. DATA MANIPULATION 393

11.4 Data Manipulation

We discuss below several common operations that manipulate the structure of
dataframes.

11.4.1 Random Sampling, Partitioning, and Shu✏ing

A common operation in data analysis is to select a random subset of the rows of a
dataframe, with or without replacement. For example, a subset of size 2 without
replacement corresponds to selecting one row, and then selecting another row
from the remaining rows. Sampling with replacement may select the same row
multiple times.

We demonstrate these tasks using R code. Python’s pandas module fea-
tures similar functionality. The R sample function accepts a vector of values
from which to sample (typically a vector of row indices), the number of samples,
whether the sampling is done with or without replacement, and the probability
of sampling di↵erent values. By default, the probability of sampling each value
is identical: 1/k where k is the number of values from which we sample. For
example, the R code below samples 3 times from the values 1,2,3,4, without
replacements.

sampled_row_indices = sample(1:4, 3, replace=FALSE)
print(sampled_row_indices)
[1] 1 4 2

After obtaining the indices that we wish to sample. we form a new array or
dataframe containing the sampled rows of the original dataframe.

D = array(data = seq(1, 20, length.out = 20), dim = c(4, 5))
D_sampled = D[sampled_row_indices,]
print(D_sampled)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 4 8 12 16 20
[3,] 2 6 10 14 18

In some cases, we need to partition the dataset’s rows into two or more
collection of rows. To do so, we proceed with generating a random permutation
of k objects (using sample(k,k)), where k is the number of rows in the data,
and then divide the permutation vector into two or more parts based on the
prescribed sizes. We then create new dataframes whose rows correspond to the
divided permutation vector. For example, the R code below partitions an array
into two new arrays of sizes 75% and 25%.

D = array(data = seq(1, 20, length.out = 20), dim = c(4, 5))
print(D)
[,1] [,2] [,3] [,4] [,5]

394 CHAPTER 11. DATA PROCESSING

[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
rand_perm = sample(4,4)
first_set_of_indices = rand_perm[1:floor(4*0.75)]
second_set_of_indices = rand_perm[(floor(4*0.75)+1):4]
D1 = D[first_set_of_indices,]
D2 = D[second_set_of_indices,]
print(D1)
[,1] [,2] [,3] [,4] [,5]
[1,] 4 8 12 16 20
[2,] 1 5 9 13 17
[3,] 2 6 10 14 18
print(D2)
[1] 3 7 11 15 19

A related task is data shu✏ing, which randomly shu✏es the dataframe rows.

D = array(data = seq(1, 20, length.out = 20), dim = c(4, 5))
print(D)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
D_shuffled = D[sample(4, 4),]
print(D_shuffled)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 4 8 12 16 20
[3,] 3 7 11 15 19
[4,] 2 6 10 14 18

11.4.2 Concatenations and Joins

Often, data needs to be aggregated from multiple sources into a single object
that will be used for visualization and modeling. We demonstrate below how to
do it with Python. R features similar capability.

In some cases the two data sources contain di↵erent records (dataframe rows)
annotated with the same attribute names (column names). In this case aggre-
gating the two sources is simply concatenating the rows of the two data frames.
The Python code below creates two data frames with identical column names
and then concatenates them.

import numpy as np
import pandas as pd

11.4. DATA MANIPULATION 395

data1 = {"ID" : ["2134", "4524"],
"name" : ["John Smith", "Jane Doe"]}

D1 = pd.DataFrame(data1)
data2 = {"ID" : ["9423", "3483"],

"name" : ["Bob Jones", "Mary Smith"]}
D2 = pd.DataFrame(data2)
print("D1:\n" + str(D1))
print("D2:\n" + str(D2))
D3 = pd.concat([D1, D2])
print("concatenation of D1, D2:\n" + str(D3))
D1:
ID name
0 2134 John Smith
1 4524 Jane Doe
D2:
ID name
0 9423 Bob Jones
1 3483 Mary Smith
concatenation of D1, D2:
ID name
0 2134 John Smith
1 4524 Jane Doe
0 9423 Bob Jones
1 3483 Mary Smith

When concatenating dataframes with non identical columns, new columns are
added to the concatenated dataframe with missing values filled in as needed.

import numpy as np
import pandas as pd
data1 = {"ID" : ["2134", "4524"],

"name" : ["John Smith", "Jane Doe"]}
D1 = pd.DataFrame(data1)
data2 = {"ID" : ["9423", "3483"],

"nick name" : ["Bobby", "Abby"]}
D2 = pd.DataFrame(data2)
print("D1:\n" + str(D1))
print("D2:\n" + str(D2))
D3 = pd.concat([D1, D2])
print("concatenation of D1, D2:\n" + str(D3))
D1:
ID name
0 2134 John Smith
1 4524 Jane Doe
D2:
ID nick name
0 9423 Bobby
1 3483 Abby
concatenation of D1, D2:

396 CHAPTER 11. DATA PROCESSING

ID name nick name
0 2134 John Smith NaN
1 4524 Jane Doe NaN
0 9423 NaN Bobby
1 3483 NaN Abby

Thus far, we assumed that the records in both data sources correspond to
distinct entities. In some cases the same entity is described in two data sources
that potentially list di↵erent attributes. However, in order to determine how to
match records in one data source to records in another source we assume that
each data source has one or more columns acting as identifiers. The identifiers
can be used to match a row in one dataframe with a row in a di↵erent dataframe.
The operation of merging such data is called a join and the identifier column is
called the key.

We create below two data frames where the identifier attribute is named ID
in both data sources. An inner join operation retains records that appear in both
data sources and all attributes that appear in either the first or the second data
source.

import numpy as np
import pandas as pd
data1 = {"ID" : ["2134", "4524"],

"name" : ["John Smith", "Jane Doe"]}
D1 = pd.DataFrame(data1)
data2 = {"ID" : ["6325", "2134"],

"age" : [25, 35],
"tenure" : [3, 8]}

D2 = pd.DataFrame(data2)
print("D1:\n" + str(D1))
print("D2:\n" + str(D2))
D3 = pd.merge(D1, D2, on = 'ID', how = 'inner')
print("inner join of D1, D2:\n" + str(D3))
D1:
ID name
0 2134 John Smith
1 4524 Jane Doe
D2:
ID age tenure
0 6325 25 3
1 2134 35 8
inner join of D1, D2:
ID name age tenure
0 2134 John Smith 35 8

An outer join operation is similar to inner join, except that all records and all
attributes are retained, with missing values (denoted by NA) filled in as needed.
A left join is similar, except that all common records and attributes are retained
plus the records and attributes in the left data source. A right join is similar,

11.4. DATA MANIPULATION 397

except that all common records and attributes are retained plus the records and
attributes in the right data source.

import numpy as np
import pandas as pd
data1 = {"ID" : ["2134", "4524"],

"name" : ["John Smith", "Jane Doe"]}
D1 = pd.DataFrame(data1)
data2 = {"ID" : ["6325", "2134"],

"age" : [25, 35],
"tenure" : [3, 8]}

D2 = pd.DataFrame(data2)
D3 = pd.merge(D1, D2, on = 'ID', how = 'outer')
print("outer join of D1, D2:\n" + str(D3))
D4 = pd.merge(D1, D2, on = 'ID', how = 'left')
print("left join of D1, D2:\n" + str(D4))
outer join of D1, D2:
ID name age tenure
0 2134 John Smith 35.0 8.0
1 4524 Jane Doe NaN NaN
2 6325 NaN 25.0 3.0
left join of D1, D2:
ID name age tenure
0 2134 John Smith 35.0 8.0
1 4524 Jane Doe NaN NaN

Above, we assumed that the key attribute acts as a unique identifier in both
data sources (any specific key appears at most one time). If we have multiple
records with the same key in one or both of the data sources, the join operation
forms multiple combinations.

import numpy as np
import pandas as pd
data1 = {"ID" : ["2134", "4524", "2134"],

"name" : ["John Smith", "Jane Doe", "JOHN SMITH"]}
D1 = pd.DataFrame(data1)
data2 = {"ID" : ["6325", "2134"],

"age" : [25, 35],
"tenure" : [3, 8]}

D2 = pd.DataFrame(data2)
D3 = pd.merge(D1, D2, on = 'ID', how = 'outer')
print("outer join of D1, D2:\n" + str(D3))
outer join of D1, D2:
ID name age tenure
0 2134 John Smith 35.0 8.0
1 2134 JOHN SMITH 35.0 8.0
2 4524 Jane Doe NaN NaN
3 6325 NaN 25.0 3.0

398 CHAPTER 11. DATA PROCESSING

We also assumed above that the non-key attribute names are di↵erent in both
data sources. If they are not, a su�x is introduced in the merged dataframe.

import numpy as np
import pandas as pd
data1 = {"ID" : ["2134", "4524"],

"f1" : ["John Smith", "Jane Doe"]}
D1 = pd.DataFrame(data1)
data2 = {"ID" : ["6325", "2134"],

"f1" : [25, 35],
"f2" : [3, 8]}

D2 = pd.DataFrame(data2)
D3 = pd.merge(D1, D2, on = 'ID', how = 'outer')
print("outer join of D1, D2:\n" + str(D3))
outer join of D1, D2:
ID f1_x f1_y f2
0 2134 John Smith 35.0 8.0
1 4524 Jane Doe NaN NaN
2 6325 NaN 25.0 3.0

11.4.3 Tall Data and Wide Data

Data in tall format is an array or dataframe containing multiple columns where
one or more columns act as a unique identifier and an additional column repre-
sents value. For example, consider the tall data below representing item sales in
a grocery store.

2015/01/01 apples 200
2015/01/01 oranges 150
2015/01/02 apples 220
2015/01/02 oranges 130

Such data may represent the entire sales records of the store. This format is
convenient for adding new records incrementally representing additional sales as
they occur, and for removing old records (possibly due to returns in the above
case representing a store). The designation “tall data” reflects the fact that in
most cases tall data has many rows but only a few columns.

A disadvantage of tall data format is that it not easy for conducting analysis
or summarizing. For example, we may want to compute the total sales for each
day or the average daily sales of a specific item such as apples. Computing these
quantities from tall data requires writing a program that will collect all relevant
rows, aggregate it appropriately, and produce the desired quantity. This is not
only time consuming from a programming perspective, but it may also be time
consuming in terms of computing time (if there are many rows).

Wide data represents the same information as tall data, but may represent
in multiple columns the information that tall data holds in multiple rows. For
example, the wide data version of the grocery data above is listed below.

11.4. DATA MANIPULATION 399

Date apples oranges

2015/01/01 200 150
2015/01/02 220 130

Wide data is usually simpler to analyze. For example, computing the total
sales per day requires summing over each row and computing the average daily
per-item sales requires computing averages over columns.

Note that when converting the above data from tall to wide, the first column
and the second column represent unique keys and the last column represent the
corresponding value. In other words, each (date, item) combination can appear
only once, while no such restriction applies to the third column. In converting
the tall data to wide, the first column in the tall data became the first column
in the wide data, the second column in the tall data became the column names
in the wide data, and the third column formed the remaining table entries.

11.4.4 Reshaping Data

In this section we describe how to convert data from tall to wide format and vice
verse using the reshape2 package in R [43]. Similar functionality is available in
Python’s pandas module.

The melt function accepts a dataframe in a wide format, and the indices of
the columns that act as unique identifiers (remaining columns act as measure-
ments or values). It returns a tall version of the dataframe. The R code below
demonstrates this with two di↵erent selection of identifier columns.

library(reshape2)
toy (wide) dataframe in the reshape2 package
smiths
subject time age weight height
1 John Smith 1 33 90 1.87
2 Mary Smith 1 NA NA 1.54
columns 2, 3, 4, 5 are measurements, 1 is key
melt(smiths, id = 1)
subject variable value
1 John Smith time 1.00
2 Mary Smith time 1.00
3 John Smith age 33.00
4 Mary Smith age NA
5 John Smith weight 90.00
6 Mary Smith weight NA
7 John Smith height 1.87
8 Mary Smith height 1.54
columns 3, 4, 5 are measurements, 1,2 are key
melt(smiths, id = c(1, 2))
subject time variable value
1 John Smith 1 age 33.00

400 CHAPTER 11. DATA PROCESSING

2 Mary Smith 1 age NA
3 John Smith 1 weight 90.00
4 Mary Smith 1 weight NA
5 John Smith 1 height 1.87
6 Mary Smith 1 height 1.54

Note that the tall data produced by melt features appropriate column names.
The functions acast or dcast (the first returns an array and the second

a dataframe) represent the inverse of the melt operation. Their argument is a
dataframe in wide form and the second is a formula a ⇠ b ⇠ · · · ⇠ where each
of a, b, . . . represents a list of variables whose values will be displayed along the
dimensions of the returned array or dataframe (a for rows, b for columns, etc.).
The cast array or dataframe may have at most one value in each cell. If there are
more than a single value setting, a third argument fun.aggregate executes
the corresponding function in order to aggregate the multiple values into a single
value.

The example below uses the tips dataset from the reshape2 package. It
contains 244 restaurant tips. Dataframe columns include tip, bill, gender of
payer, smoker/non-smoker, day of the week, time of day, and size of party. Type
help(tips) for more information.

tips$total.bill = tips$total_bill
qplot(total.bill,

tip,
facets = sex˜time,
size = I(1.5),
data = tips)

Dinner Lunch

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

F
em

ale
M
ale

10 20 30 40 50 10 20 30 40 50

total.bill

ti
p

11.4. DATA MANIPULATION 401

We can see from the figure that (1) tip sizes increase with the bill, (2) the
variability in tip sizes increase with the bill, (3) bills and tips in dinner are
larger than in lunch, (4) there are more dinner tip observations than lunch tip
observations, and (5) there are more male payers than female payers.

In the example below we are interested in analyzing tips and bills and the
dependence of these variables on the remaining variables. We thus denote the
tip and total bill as the measurement variables and the remaining variables as
identifiers.

library(reshape2)
head(tips) # first six rows
total_bill tip sex smoker day time
1 16.99 1.01 Female No Sun Dinner
2 10.34 1.66 Male No Sun Dinner
3 21.01 3.50 Male No Sun Dinner
4 23.68 3.31 Male No Sun Dinner
5 24.59 3.61 Female No Sun Dinner
6 25.29 4.71 Male No Sun Dinner
size total.bill
1 2 16.99
2 3 10.34
3 3 21.01
4 2 23.68
5 4 24.59
6 4 25.29
tipsm = melt(tips,

id = c("sex","smoker","day","time","size"))
head(tipsm) # first six rows
sex smoker day time size variable
1 Female No Sun Dinner 2 total_bill
2 Male No Sun Dinner 3 total_bill
3 Male No Sun Dinner 3 total_bill
4 Male No Sun Dinner 2 total_bill
5 Female No Sun Dinner 4 total_bill
6 Male No Sun Dinner 4 total_bill
value
1 16.99
2 10.34
3 21.01
4 23.68
5 24.59
6 25.29
tail(tipsm) # last six rows
sex smoker day time size
727 Female No Sat Dinner 3
728 Male No Sat Dinner 3
729 Female Yes Sat Dinner 2
730 Male Yes Sat Dinner 2
731 Male No Sat Dinner 2

402 CHAPTER 11. DATA PROCESSING

732 Female No Thur Dinner 2
variable value
727 total.bill 35.83
728 total.bill 29.03
729 total.bill 27.18
730 total.bill 22.67
731 total.bill 17.82
732 total.bill 18.78
Mean of measurement variables broken by sex.
Note the role of mean as the aggregating function.
dcast(tipsm,

sex˜variable,
fun.aggregate = mean)

sex total_bill tip total.bill
1 Female 18.05690 2.833448 18.05690
2 Male 20.74408 3.089618 20.74408
Number of occurrences for measurement variables broken by sex.
Note the role of length as the aggregating function.
dcast(tipsm,

sex˜variable,
fun.aggregate = length)

sex total_bill tip total.bill
1 Female 87 87 87
2 Male 157 157 157
Average total bill and tip for different times
dcast(tipsm,

time˜variable,
fun.aggregate = mean)

time total_bill tip total.bill
1 Dinner 20.79716 3.102670 20.79716
2 Lunch 17.16868 2.728088 17.16868
Similar to above with breakdown for sex and time:
dcast(tipsm,

sex+time˜variable,
fun.aggregate = length)

sex time total_bill tip total.bill
1 Female Dinner 52 52 52
2 Female Lunch 35 35 35
3 Male Dinner 124 124 124
4 Male Lunch 33 33 33
Similar to above, but with mean and added margins
dcast(tipsm,

sex+time˜variable,
fun.aggregate = mean,
margins = TRUE)

sex time total_bill tip
1 Female Dinner 19.21308 3.002115
2 Female Lunch 16.33914 2.582857
3 Female (all) 18.05690 2.833448

11.4. DATA MANIPULATION 403

4 Male Dinner 21.46145 3.144839
5 Male Lunch 18.04848 2.882121
6 Male (all) 20.74408 3.089618
7 (all) (all) 19.78594 2.998279
total.bill (all)
1 19.21308 13.80942
2 16.33914 11.75371
3 18.05690 12.98241
4 21.46145 15.35591
5 18.04848 12.99303
6 20.74408 14.85926
7 19.78594 14.19005

The melt and cast analysis above suggests the following conclusions with
respect to the tips dataframe.

1. On average, males pay higher total bill and tip than females.

2. Males pay more frequently than females.

3. Dinner bills and tips are generally higher than lunch bills and tips.

4. Males pay disproportionately more times for dinner than they do for lunch
(this holds much less for females).

5. Even accounting for (4) by conditioning on paying for lunch or dinner,
males still pay higher total bills and tips than females.

A graphical investigation using faceted scatter plots and histograms may re-
veal similar conclusions. Nevertheless, the above analysis using cast and melt has
an advantage over graphical analysis in that a proficient user can very quickly
observe properties of the data that are hard to graph (number of measurements
for di↵erent combination of identifier variables, means of di↵erent groups, etc).

The online package documentation or [43] provides additional information on
the reshape2 package.

11.4.5 The Split-Apply-Combine Framework

Many data analysis operations on dataframes can be decomposed to three stages:

1. splitting the dataframe along some dimensions to form smaller arrays or
dataframes,

2. applying some operation to each of the smaller arrays or dataframes, and

3. combining the results of the application stage into a single meaningful array
or dataframe.

404 CHAPTER 11. DATA PROCESSING

Repeatedly programming all three stages whenever we need to compute a
data summary may be tedious and can lead to errors. The plyr package in R [45]
automates this process, letting the analyst concentrate on the data analysis task
rather than tedious programming.

The plyr package implements the following functions that di↵er in the type
of input arguments they receive and the type of output they provide.

output array dataframe list discarded
input
array aaply adply alply a ply
dataframe daply ddply dlply d ply
list laply ldply llply l ply

The first argument in each of these functions is the data stored as an array,
dataframe, or list depending on the input type in the table above. The second
argument of the a*ply functions1, called .margins, determines the dimensions
that are used to split the data. A value of 1 implies splitting by rows. A value of
2 implies splitting into columns, and so forth. A combination value may also be
used, for example c(1,2) splits the data into a combination of rows and columns.
The second argument of the d*ply functions, called .variables, determines
the dataframe columns (multiple columns are allowed) that are used to split the
data. Since there is only one way to split a list there is no corresponding argument
for the l*ply functions. For all functions the argument .fun determines which
function to execute in the apply stage.

We illustrate these functions using the baseball dataset from the plyr
package. This dataset contains variables such as year, team, number of runs,
number of strikeouts for 1228 baseball players. Each row records the performance
of a baseball player during one baseball season. In particular, the performance
of specific players is spread across multiple rows, one corresponding to each year
played. The following example is inspired by the R help listing of the ddply
function.

library(plyr)
head(baseball)
id year stint team lg g ab r
4 ansonca01 1871 1 RC1 25 120 29
44 forceda01 1871 1 WS3 32 162 45
68 mathebo01 1871 1 FW1 19 89 15
99 startjo01 1871 1 NY2 33 161 35
102 suttoez01 1871 1 CL1 29 128 35
106 whitede01 1871 1 CL1 29 146 40
h X2b X3b hr rbi sb cs bb so ibb hbp sh
4 39 11 3 0 16 6 2 2 1 NA NA NA
44 45 9 4 0 29 8 0 4 0 NA NA NA

1We use the asterisk in a*ply and elsewhere to indicate a collection of functions obtained
by substituting the asterisk with other characters.

11.4. DATA MANIPULATION 405

68 24 3 1 0 10 2 1 2 0 NA NA NA
99 58 5 1 1 34 4 2 3 0 NA NA NA
102 45 3 7 3 23 3 1 1 0 NA NA NA
106 47 6 5 1 21 2 2 4 1 NA NA NA
sf gidp
4 NA NA
44 NA NA
68 NA NA
99 NA NA
102 NA NA
106 NA NA
count number of players recorded for each year
bbPerYear = ddply(baseball, "year", "nrow")
head(bbPerYear)
year nrow
1 1871 7
2 1872 13
3 1873 13
4 1874 15
5 1875 17
6 1876 15
qplot(x = year,

y = nrow,
data = bbPerYear,
geom = "line",
ylab="number of player seasons")

0

100

200

300

1900 1950 2000

year

nu
m
b
er

of
p
la
ye
r
se
as
on

s

The number of player seasons recorded in the dataset for each year increases
dramatically from 1880 to around 1990, but decreases in later years close to the
turn of the century. The simple one line command above would be otherwise

406 CHAPTER 11. DATA PROCESSING

more complicated.

compute mean rbi (batting attempt resulting in runs)
for all years. Summarize is the apply function, which
takes as argument a function that computes the rbi mean
bbMod=ddply(baseball,

"year",
summarise,
mean.rbi = mean(rbi, na.rm = TRUE))

head(bbMod)
year mean.rbi
1 1871 22.28571
2 1872 20.53846
3 1873 30.92308
4 1874 29.00000
5 1875 31.58824
6 1876 30.13333
qplot(x = year,

y = mean.rbi,
data = bbMod,
geom = "line",
ylab = "mean RBI")

20

30

40

50

60

1900 1950 2000

year

m
ea
n
R
B
I

The graph above shows that the mean of the RBI, which is a batting per-
formance measure, was substantially higher in the late nineteenth century than
in other times. Below, we add another variable to the dataframe containing the
number of years a player has played baseball up to that point. It is computed as
the current year minus the year the player started playing plus one.

11.4. DATA MANIPULATION 407

add a column career.year which measures the number of years passed
since each player started batting
bbMod2 = ddply(baseball,

"id",
transform,
career.year = year - min(year) + 1)

sample a random subset 3000 rows to avoid over-plotting
bbSubset = bbMod2[sample(dim(bbMod2)[1], 3000),]
qplot(career.year,

rbi, data = bbSubset,
size = I(0.8),
geom = "jitter",
ylab = "RBI",
xlab = "years of playing") +

geom_smooth(color = "red", se = F, size = 1.5)

0

50

100

150

0 10 20

years of playing

R
B
I

The RBI tends to improve with experience up to 7 or 8 years and then starts
to decline (on average). RBI for players with more than 20 years experience
tends to be very low, although a few exceptions exist (outliers at the top-right
corner of the figure above).

The example below explores the function aaply using the ozone dataset
from the plyr package. The ozone dataset contains a 3-dimensional array of
ozone measurements varying by latitude, longitude, and time.

library(plyr)
dim(ozone)
[1] 24 24 72
latitude.mean = aaply(ozone, 1, mean)
longitude.mean = aaply(ozone, 2, mean)

408 CHAPTER 11. DATA PROCESSING

time.mean = aaply(ozone, 3, mean)
longitude = seq(along = longitude.mean)
qplot(x = longitude,

y = longitude.mean,
ylab = "mean ozone level")

266

267

268

269

0 5 10 15 20 25

longitude

m
ea
n
oz
on

e
le
ve
l

latitude = seq(along = latitude.mean)
qplot(x = latitude,

y = latitude.mean,
ylab = "mean ozone level",
geom = "line")

11.4. DATA MANIPULATION 409

260

270

280

290

300

310

0 5 10 15 20 25

latitude

m
ea
n
oz
on

e
le
ve
l

months = seq(along = time.mean)
qplot(x = months,

y = time.mean,
geom = "line",
ylab = "mean ozone level",
xlab = "months since January 1985")

260

265

270

275

0 20 40 60

months since January 1985

m
ea
n
oz
on

e
le
ve
l

From the three figures above, we conclude that ozone has a clear minimum
mean ozone level at longitude 19 and latitude 12, and that the ozone level has
an interesting temporal periodicity. Not unexpectedly, the periodicity coincides

410 CHAPTER 11. DATA PROCESSING

with the annual season cycle (each period is 12 months).
The functions in the plyr package are very general. See [45] or the online

package documentation for more detail.

11.5 Notes

Our discussion in this chapter of handling missing values, outliers, and skewed
data is superficial. An in-depth treatment requires substantial technical prereq-
uisites including probability and statistics. There are several sources containing
such an in-depth description. For the topic of missing data refer to [21]. For the
topic of robustness refer to [13] or the more recent [25]. Power transformations
appear in most regression textbooks, for example [19]. More information on ma-
nipulating data using R appears in [37]. Specific details on the reshape2 and
plyr packages appear in [43] and [45].

11.6 Exercises

1. Follow the example of analyzing the ozone dataset above, but investigate
the ozone variance instead of the ozone mean. Are there any meaningful
conclusions you can make regarding the change of variance in space and
time?

2. The chapter shows how to use power transformations to transform data that
is right-skewed or left-skewed into a symmetric shape. In some cases data
is skewed towards both sides (there is a heavy tail to the left and a heavy
tail to the right). Suggest a generalization of the power transformation that
removes such skewness.

3. The chapter presents three alternatives for handling missing data. What
could go wrong when each one of these alternatives is used to handle data
that is not MCAR?

4. The packages reshape2 and plyr share some functionality. Show two
distinct examples and provide code that accomplishes the same results with
both packages. For such tasks, which of the two packages would you prefer?
What are the pros and cons of the two packages?

