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GUY LEBANON

Abstract. High dimensional structured data such as text and images is of-
ten poorly understood and misrepresented in statistical modeling. Typical
approaches to modeling such data involve, either explicitly or implicitly, arbi-
trary geometric assumptions. In this paper, we review a framework introduced
by Lebanon and Lafferty that is based on Čencov’s theorem for obtaining a
coherent geometry for data. The framework enables adaptation of popular

models to the new geometry and in the context of text classification yields
superior performance with respect to classification error rate on held out data.
The framework demonstrates how information geometry may be applied to
modeling high dimensional structured data and points at new directions for
future research.

1. Introduction

With the dramatic growth of databases such as the internet, there has been a
surge in applications that model high dimensional structured data. Such data is
structured in the sense that it appears in a form that is different from points in
R

n. The typical approach to modeling such data is to use features f = (f1, . . . , fn),
f : X → R

n or sufficient statistics to embed the data in R
n. For example, typical

features for text documents are the relative frequency of dictionary words in the
document.

The statistical approach to modeling such data continues with hypothesizing a
parametric family of distributions {pθ : θ ∈ Θ} where pθ is either generative pθ(x)
or conditional pθ(y|x) as is the case in classification, and depends on the data x
through the features f(x). The classical approach often proceeds with selecting

a single model p
θ̂

that corresponds to a point estimate θ̂ such as the maximum
likelihood estimator.

As representation of structured data is far from being a solved problem, it is
not clear what form should the model pθ(y|x) = pθ(y|f(x)) take (in this paper
we concentrate on conditional modeling or classification). In most cases, standard
models such as a mixture of Gaussians or logistic regression for pθ(y|x) are used. A
key observation is that in forming such models, assumptions are being made, either
explicitly or implicitly concerning the geometry of the data x (or of the features
f(x)). For example, it is relatively obvious that using a mixture of Gaussians with
Σ1 = Σ2 = σ2I as the conditional model assumes Euclidean geometry for the data.
If the covariance matrix Σ is not a multiple of the identity matrix, an alternative
geometry expressed as a normed vector space is assumed. It is less obvious that
similar assumptions are implicitly made for popular conditional models such as
logistic regression, support vector machines (SVM), and boosting1. In fact, logistic
regression, boosting, linear kernel SVM, and RBF kernel SVM all assume Euclidean
geometry on the data (this statement will be partially motivated in Section 3).

1While SVM and boosting are, strictly speaking, not conditional distributions, we view them
as non-normalized conditional models. See for example [8] for more details.
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The assumption of Euclidean geometry mentioned above is rather arbitrary.
There is no reason for believe that word frequencies in documents or pixel brightness
values in images should be modeled using Euclidean geometry. Such an assumption
is driven by the familiarity of Euclidean models and perhaps computational effi-
ciency, rather than being a statement about the data. This approach, sometimes
called “the dirty laundry of machine learning”, treats popular models such as SVM
or logistic regression as a black box that processes structured data regardless of the
data origin.

A more motivated approach is to obtain a domain dependent geometry for the
data that would lead to alternative models. This geometry may be obtained in
several ways. It could be specified by experts familiar with the specific domain.
However, it is typically a hard task, even for experts, to specify such a geometry.
Alternatively, the geometry can be adapted based on known a data set, as in [7, 10]
or on domain-dependent axiomatic arguments as in [4, 5].

In this paper we review a framework described in a series of papers by Lebanon
and Lafferty [9, 4, 6] for obtaining domain-dependent geometry and adapting ex-
isting classification models for this geometry. Section 2 discusses the embedding
principle for obtaining the geometry. Section 3 describes adapting the conditional
models of radial basis kernel SVM and logistic regression to alternative geometries.
Section 4 concludes the paper with a brief discussion.

2. The Embedding Principle

As mentioned in the introduction, we would like to avoid arbitrary assumptions
on the geometry of the data. Čencov’s theorem [3] (see also its extensions in [2, 5])
provides a theoretical motivation for the use of the Fisher information metric on a
manifold Θ of distributions. At first glance it is not clear how this can contribute
towards obtaining a well-motivated data geometry. Data such as documents and
images are not distributions and therefore their space is not similar to a statistical
manifold Θ. The embedding principle, formulated in [6], gets around this difficulty
by embedding the data in a statistical manifold as follows.

The Embedding Principle: Assume that the data x1, . . . , xn is drawn from n dis-
tinct distributions p(x ; θtrue

1 ), . . . , p(x ; θtrue
n ) that lie in the same family θtrue

1 , . . . , θtrue
n

∈ Θ. As the sampling simulates noisy corruption, we can replace the data x1, . . . , xn

with the underlying distributions θtrue
1 , . . . , θtrue

n thus obtaining an embedding of the
data in a Riemannian manifold (Θ, g) where g is the Fisher information metric.

In most cases, we do not know the underlying distributions θtrue
1 , . . . , θtrue

n . An
approximate version of the embedding principle is to embed the data in (Θ, g) using

estimates θ̂1, . . . , θ̂n obtained by estimators such as MLE, MAP or empirical Bayes.
Accounting for embedding error resulting from inaccurate estimates and a Bayesian
version of the embedding principles are interesting directions for future research.
A diagram illustrating the embedding principle appear in Figure 1.

A straightforward example for the embedding principle is the popular term fre-
quency (tf) representation for documents. In this representation, the word order
is ignored and a document is represented by a vector of the relative frequencies of
words (or histogram)

xi =
# times word i appeared in document

∑

j # times word j appeared in document
.

This representation may be interpreted as the MLE approximate embedding of doc-
uments under a multinomial distribution and embeds the data in the multinomial
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{xi} {θtrue
i }

{θ̂i}

{θ̂i} ⊂ (Θ, g)

Figure 1. Motivation for the embedding principle. See text for
more details.

simplex

Pm =







θ ∈ R
m+1 : ∀i θi > 0,

∑

j

θj = 1







.

The case of zero word occurrences presents some technical difficulties as the result-
ing embedding is in the closure of the simplex which is not technically a manifold
or even a manifold with a boundary, but rather a manifold with corners. However,
this may be solved easily in a number of ways, for example by replacing the MLE
with the MAP under a Dirichlet prior which results in smoothing the zero values.

Applying the embedding principle to data generated from Gaussian distributions
is less straightforward. The MLE, for example, would result in a degenerate embed-
ding possessing zero variance everywhere. A possible solution, described in [6], is to

consider embedding functions that operate on the entire data set θ̂ : Xn → Θn in a
way that is not decomposable to independent embeddings. One example, illustrated
in Figure 2, describes embedding in the hyperbolic upper half space representing
spherical Gaussians using sampling from the posterior of a Dirichlet process mixture
model (DPMM) (see [6] for more details).

3. Modeling

Once the question of which geometry to use is resolved we need to focus on
ways of using it in classification. We describe here the geometric adaptation of
three models described in [4, 9, 6]. We start with the simplest case of nearest
neighbor, then proceed to radial basis function support vector machines and logistic
regression.

Adapting a k-nearest neighbor classifier simply requires switching the way of
computing the distances. Instead of Euclidean distance ‖x−y‖2 we use the geodesic
distance, for example in the case of the Fisher geometry on the multinomial simplex

d(θ̂(x), θ̂(y)) = arccos

(

∑

i

√

[θ̂(x)]i[θ̂(y)]i

)

.

The simplex is illustrated in Figure 3 while the decision boundaries for both ge-
ometries on Pm is illustrated in Figure 4.

A more effective classification model is support vector machine (SVM). SVM
requires the definition of a function K(x, y) known as a Mercer kernel function.
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Figure 2. A sample from the posterior of a DPMM based on
data from two Gaussians N((−1,−1)⊤, I) (solid blue dots) and
N((1, 1)⊤, I) (hollow red dots). The embedding is realized by the
displayed circles representing points in the upper-half plane Θ =
R

2 × R+ parameterizing spherical Gaussian distributions.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 3. The 2-simplex P2 may be visualized as a surface in R
3

(left) or as a triangle in R
2 (right).

Mercer kernels serve as a measure of similarity between points and yet are fun-
damentally different from distances. They have to satisfy certain properties such
as symmetry and positive definiteness. One of the most popular kernels is the
radial basis function (RBF) kernel Kσ(x, y) = exp(−‖x − y‖2/σ) which obviously
incorporates the Euclidean assumption. Lafferty and Lebanon [4] generalized it
to arbitrary Riemannian manifolds by observing that the RBF kernel is the heat
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Figure 4. Equal distance contours on P2 from the upper right
edge (top row), the center (center row), and lower right corner
(bottom row). The distances are computed using the Fisher infor-
mation metric (left) or the Euclidean metric (right).

kernel for Euclidean geometry. In other words, it is the kernel associated with the
heat equation △f = ∂f/∂t under the Euclidean Laplacian △. Intuitively, Kσ(x, y)
measures the amount of heat flowing from x to y after time t, where heat flows
according to Euclidean geometry. As both the Laplacian and the heat equation are
well defined for any Riemannian manifold, we can easily generalize the RBF kernel
(at least conceptually) and use it in a support vector machine for the embedded

points Kσ(x, y) = Kσ(θ̂(x), θ̂(y)).
Often, the heat kernel does not have a closed form expression. Lafferty and

Lebanon [4] propose to use the parametrix expansion of the heat kernel in order to
obtain a closed form approximation. This leads to the following approximation in
the case of the Fisher geometry on the simplex

Kt(x, y) = exp

(

−1

t
arccos2

(

∑

i

√

[θ̂(x)]i[θ̂(y)]i

))

.
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The case of linear classifiers such as logistic regression is somewhat more complex.
We treat below in general the case of margin based linear classifiers and focus on
the special case of logistic regression described in [9].

Linear classifiers such as logistic regression and boosting have the following linear
decision rule ŷ = sign(

∑

i wixi) ∈ {−1, +1}. More interestingly, from a geometric
perspective the resulting decision boundary is a linear hyperplane {x :

∑

i wixi = 0}
in R

n. Such a decision boundary may be motivated by several arguments. One such
argument is that the regularity of linear hyperplanes strikes a good tradeoff in the
following conflict. On one side, the model family need to be rich enough to allow
good fit to the data while on the other hand, it should be restricted to prevent
over-fitting. A second argument for linear hyperplane classifiers is that they are
the optimal classifiers for separating two Gaussians with equal covariance matrices.
A problem with these and other arguments is that they all rely on the assumption of
Euclidean geometry. If a different geometry is to be used, we would like to maintain
the above motivations for linear classifiers, generalized to the alternative geometry.
The natural generalization to Riemannian manifolds is

Definition 1. A linear decision boundary N in a Riemannian manifold M is an
auto-parallel sub-manifold of M such that M \ N has two connected components.

Auto-parallelism is a geometric property that enforces flatness of N with respect
to the metric connection2 of M . It is equivalent to the requirement that every
geodesic in M between two points in N lie completely in N . The first part of the
definition thus enforces a regularity condition on N making it flat in an analogous
way to the flatness of hyperplanes in Euclidean geometry while the second part
requires N to be a decision boundary.

A second issue that we need to address is how to select a specific classifier from
the class of linear decision boundaries. Margin classifiers, including linear SVM,
boosting and logistic regression make use of the concept of margins in their training.
A geometry generalization of the margin concept leads to the following definition

Definition 2. The margin of a point x with respect to a sub-manifold N is

d(x, N) = inf
y∈N

d(x, y).

Conceptually all the linear margin classifiers described above may be generalized
to arbitrary manifolds using Definitions 1 and 2 above. However, computing the
margin and identifying linear decision boundaries may be a complicated or imprac-
tical matter. We proceed with some details concerning the adaptation of logistic
regression to the Fisher geometry on Pm.

A well-known device for working with the Fisher geometry of the simplex is the
local isometry ι : P

m → S
+
m, ι(x) = (

√
x1, . . . ,

√
xm+1) where S

+
m is the positive

sphere

S
+
m =

{

x ∈ R
m+1 : ∀i xi > 0,

∑

i

x2
i = 1

}

equipped with the local Euclidean metric g(u, v) = 〈u, v〉 =
∑

i uivi. Using the
above observation we can easily identify the linear decision surfaces on the sim-
plex as intersections of S

+
m and m-dimensional subspaces E of R

m+1 – pulled back
through the inverse isometry ι−1 to the simplex. Moreover, using techniques such
as the spherical law of cosines the margin d(x, ι−1(S+

m ∩ E)) may be efficiently
approximated [9].

2Auto-parallelism may also be enforced with respect to other connections, for example α con-
nections [1]. We concentrate here on the metric connection as in this case the motivation from

Čencov’s theorem is strongest.
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To apply the above to logistic regression, we need to present it in a form that
exposes it as a linear margin classifier. Denoting the parameter vector by η the
parametric form of logistic regression, with y ∈ {−1, 1}, is

pη(y |x) ∝ exp(y〈x, η〉) = exp (y ‖η‖ 〈x, η̂〉) = exp (‖η‖ · ysign(〈x, η̂〉) · |〈x, η̂〉|)
= exp (‖η‖ ysign(〈x, η̂〉) d(x, Hη̂))

where η̂ is the unit norm vector proportional to η, Hη̂ is the decision boundary
which is the subspace perpendicular to η̂, and d(x, Hη̂) is the Euclidean margin.
Furthermore, s(x, η̂) = ysign(〈x, η̂〉) is −1 if x is misclassified (lies on the wrong side
of Hη̂) and +1 if x is correctly classified. Finally, we can decompose the parameter
vector η into a unit-length parameter vector η̂ and a positive parameter θ leading
to a geometric viewpoint of logistic regression

pη̂,θ(y |x) = exp (θs(x, η̂)d(x, Hη̂) − log φ)

where φ is the normalization term. The above representation exposes several impor-
tant facts concerning logistic regression. The conditional probability decreases or
increases exponentially with the margin. The parameter (η̂, θ) is composed of a unit
vector which defines the decision boundary and a positive parameter θ that controls
the aggressiveness of the exponential increase of decrease. The above forms finds
its way into the likelihood function and demonstrates the two Euclidean-geometric
assumptions of logistic regression: the Euclidean subspace decision boundaries and
the Euclidean margin. Generalizing the above to arbitrary manifolds is straightfor-
ward. We simply replace η̂ with whatever parameterizes the class of linear decision
boundaries in the Riemannian manifold M (see Definition 2) and d(x, Hη̂) with the
Riemannian version of the margin (see Definition 1). With the the above modifi-
cations, logistic regression on a Riemannian manifold becomes a parametric family
of conditional distributions that may be treated using standard techniques such as
conditional MLE for point estimation. An illustration of the obtained MLE for
logistic regression with both Euclidean geometry and the Fisher geometry on the
simplex is provided in Figure 5. Consult [9] for more details concerning Fisher
geometry-logistic regression on the simplex.

4. Discussion

The motivation for the above work is the standard practice of using Euclidean
geometry for data modeling. Although unmotivated and arbitrary, this approach
has been the dominating one in data modeling. In proposing an alternative, two
questions have to be addressed. The first question, which geometry to use, is
answered to some extent by the embedding principle. The second question, what
models to use, is answered by adapting existing models to the obtained geometry.

We covered the adaptation of RBF kernels SVM and logistic regression to the
Fisher geometry on Pm. By treating text documents as multinomial distributions,
we can apply these extension to the problem of classification of text documents. Ex-
tensive experimental results, conducted by Lebanon and Lafferty [4, 9, 6], conclude
that the Fisher adapted models significantly outperform their Euclidean counter-
parts thus leading to superior text classifiers.

The work described in this paper leads to practical applications of information
geometry to real-world data. In general, modeling of high-dimensional structured
data is poorly understood and performed. Additional research in the direction of
linking information geometry with modeling would result in two important goals.
It would provide new effective modeling techniques for the application areas, and
it would introduce information geometry to a new arena where it can display its
effectiveness.
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Figure 5. Experiments contrasting the decision boundary ob-
tained by MLE for Euclidean logistic regression (left column) with
multinomial logistic regression (right column) for toy data in P

2.
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