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Axiomatic Geometry of Conditional Models
Guy Lebanon

Abstract—We formulate and prove an axiomatic character-
ization of the Riemannian geometry underlying manifolds of
conditional models. The characterization holds for both normal-
ized and nonnormalized conditional models. In the normalized
case, the characterization extends the derivation of the Fisher
information by Čencov while in the nonnormalized case it extends
Campbell’s theorem. Due to the close connection between the con-
ditional -divergence and the product Fisher information metric,
we provides a new axiomatic interpretation of the geometries
underlying logistic regression and AdaBoost.

Index Terms—Conditional probability estimation, congruent
embedding by a Markov morphism, information geometry.

I. INTRODUCTION

THE theory of information geometry presents a geometric
interpretation of statistical properties and techniques.

Among many examples of such properties and techniques
are efficiency of estimators, robustness, maximum-likelihood
estimation for exponential models, and hypothesis testing.
The geometric properties of a space of statistical models

is studied using the mathematical framework
of Riemannian geometry. In this framework, the geometry
of a space is specified by a local inner product ,

which translates into familiar concepts such as distance,
curvature, and angles. An overview of the wide range of results
in this field may be found in the monographs of Amari [1] and
Kass and Voss [2].

A fundamental assumption in the information-geometric
framework, is the choice of the Fisher information as the metric
that underlies the geometry of probability distributions. The
choice of the Fisher information metric may be motivated in
several ways the strongest of which is Čencov’s characteri-
zation theorem ([3, Lemma 11.3]). In his theorem, Čencov
proves that the Fisher information metric is the only metric
that is invariant under a family of probabilistically meaningful
mappings termed congruent embeddings by a Markov mor-
phism. Later, Campbell extended Čencov’s result to include
nonnormalized positive models [4].

The theorems of Čencov and Campbell are particularly in-
teresting since Fisher information is pervasive in statistics and
machine learning. It is the asymptotic variance of the maximum-
likelihood estimators under some regularity conditions. Cramér
and Rao used it to compute a lower bound on the variance of
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arbitrary unbiased estimators. In Bayesian statistics, it was used
by Jeffreys to define noninformative prior. It is tightly connected
to the Kullback–Leibler divergence which is the cornerstone of
maximum-likelihood estimation for exponential models as well
as various aspects of information theory.

While the geometric approach to statistical inference has at-
tracted considerable attention, little research was conducted on
the geometric approach to conditional inference. The character-
ization theorems of Čencov and Campbell no longer apply in
this setting and the different ways of choosing a geometry for
the space of conditional distributions, in contrast to the noncon-
ditional case, are not supported by theoretical considerations.

In this paper, we extend the results of Čencov and Campbell
to provide an axiomatic characterization of conditional infor-
mation geometry. We derive the characterization theorem in the
setting of nonnormalized conditional models from which the
geometry for normalized models is obtained as a special case.
In addition, we demonstrate a close connection between the
characterized geometry and the conditional -divergence which
leads to a new axiomatic interpretation of the geometry under-
lying the primal problems of logistic regression and AdaBoost.
This interpretation builds on the recently found connection be-
tween AdaBoost and constrained minimization of -divergence
[5].

Throughout the paper, we consider spaces of strictly posi-
tive conditional models where the sample spaces of the explana-
tory and response variable are finite. Moving to the infinite case
presents some serious difficulties. The positivity constraint on
the other hand does not play a crucial role and may by discarded
at some notational cost.

The next section describes some relevant concepts from Rie-
mannian geometry and is followed by a description of the man-
ifolds of normalized and nonnormalized conditional models.
Section IV describes a family of probabilistic mappings that will
serve as the basis for the invariance requirement of the charac-
terization theorem in Section V. Section VI applies the charac-
terization result to logistic regression and AdaBoost and is fol-
lowed by concluding remarks.

II. RELEVANT CONCEPTS FROM RIEMANNIAN GEOMETRY

In this section, we describe briefly relevant concepts from
Riemannian geometry. For more details refer to any textbook
discussing Riemannian geometry, for example [6], [7].

A homeomorphism is a bijection for which both
and are continuous. We then say that and are homeo-

morphic. An -dimensional topological manifold is a topo-
logical subspace of , , that is locally equivalent to

, i.e., for every point there exists an open neigh-
borhood that is homeomorphic to . The above definition
of a topological manifold makes use of an ambient Euclidean
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Fig. 1. Two neighborhoods U , V in a two-dimensional manifoldM, the coordinate charts � , � , and the transition function  between them.

space . While sufficient for our purposes, such a reference
to is not strictly necessary and may be discarded at the cost
of certain topological assumptions [8]. Unless otherwise noted,
for the remainder of this section we assume that all manifolds
are of dimension .

The local homeomorphisms in the above definition
are usually called charts. If for every pair of charts

, the transition function defined by

is a differentiable map then is called an -differentiable
manifold. The charts and transition function for a two-dimen-
sional manifold are illustrated in Fig. 1.

Differentiable manifolds of dimensions and may be vi-
sualized as smooth curves and surfaces in Euclidean space. Ex-
amples of -dimensional differentiable manifolds are the Eu-
clidean space , the -sphere

(1)

and the -simplex

(2)

Using the charts, we can extend the definition of differen-
tiable maps to real-valued functions on manifolds
and functions from one manifold to another . This
extension is based on the known definition of differentiability
of maps between Euclidean spaces .

A continuous function is said to be
differentiable if for every chart the function

is differentiable. A continuous mapping between two dif-
ferentiable manifolds is said to be
differentiable if

A diffeomorphism between two manifolds , is a bijection
such that

and

For every point , we define an -dimensional vector
space called the tangent space. The tangent space is equiv-
alent to and its members are vectors that act as directional
derivatives on differentiable functions. Intuitively, tan-
gent spaces and tangent vectors are a generalization of the usual
notions for smooth two-dimensional surfaces in an embedding

. The technical definition, however, makes no use of an em-
bedding space [6].

In many cases, the manifold is a submanifold of a larger
manifold, often , . For example, both and
defined in (1), (2) are submanifolds of . In these cases, the
tangent space of the submanifold is a vector subspace of

and we may represent tangent vectors
in the standard basis of the embedding tangent space

as . For example, for the simplex and the
sphere we have

(3)

(4)

Fig. 2 illustrates the tangent spaces of the -simplex and the
-sphere.
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Fig. 2. Tangent spaces of the 2-simplex T and the 2-sphere T .

The definition of topological manifolds is suited for notions
such as continuity and convergence. The additional structure
that differentiable manifolds possess is necessary to deal with
differentiation. To define geometric quantities such as length,
curvature, and angles, differentiable manifolds have to be aug-
mented with a Riemannian metric.

A Riemannian manifold is a differentiable manifold
equipped with a Riemannian metric . The metric is de-

fined by a symmetric positive-definite inner product on the tan-
gent spaces that is differentiable in

Since for every

is completely described by —the
set of inner products between the basis elements of

.
The metric enables us to define lengths of tangent vectors

by and lengths of curves
by where is the velocity vector of

the curve at time . Using the above definition of lengths of
curves, we can define the distance between two points

as

where is the set of piecewise-differentiable curves con-
necting and . The distance , also called geodesic distance,
satisfies the usual requirements of a distance and is compatible
with the topological structure of as a topological manifold.

Given two Riemannian manifolds , , and a dif-
feomorphism between them we define the push-
forward and pull-back maps below, which are of crucial impor-
tance to the characterization theorems of Section V.

Definition 1: The push-forward map ,
associated with is the vector that satisfies

Intuitively, the push-forward transforms velocity vectors of
curves to velocity vectors of transformed curves .

Definition 2: Given and a diffeomorphism
we define a metric on called the pull-back metric by

the relation

Definition 3: An isometry is a diffeomorphism
between two Riemannian manifolds , for which
the following condition holds:

Isometries, as defined above, identify two Riemannian man-
ifolds as identical in terms of their Riemannian structure. Ac-
cordingly, isometries preserve all the geometric properties in-
cluding the geodesic distance function

Note that the above definition of an isometry is defined through
the local metric in contrast to the global definition of isometry
in other branches of mathematical analysis.

We proceed in Section III to define the Fisher geometry on
a manifold of distributions and to examine manifolds of condi-
tional models.

III. NORMALIZED AND NONNORMALIZED CONDITIONAL

MANIFOLDS

Parametric inference in statistics is concerned with a para-
metric family of distributions . If the
parameter space is a differentiable manifold and the mapping

is a diffeomorphism we can identify statistical
models in the family as points on the manifold . The Fisher
information matrix where is the gradient of the log
likelihood or the score may be used to endow

with the following Riemannian metric:
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In the finite nonparametric setting, which is the topic of this
paper, the event space is a finite set with and

which represents the manifold of all positive probability
models over . The positivity constraint is necessary for

to be a manifold. If zero probabilities are admitted, the
appropriate framework for the parameter space is a
manifold with corners [7]. In the final section, we return to this
topic and demonstrate how to extend the results in this paper to
the space of nonnegative conditional models. The finiteness of

and is necessary for to be a finite-dimensional manifold.
Relaxing the finiteness assumption results in a manifold where
each neighborhood is homeomorphic to an infinite-dimensional
Hilbert space [9]. Such manifolds are called Frechet manifolds
and are the topic of a branch of geometry called global analysis
[10].

Considering as a submanifold of , we represent tan-
gent vectors in the standard basis of . As
mentioned earlier (3), this results in the following representa-
tion of :

subject to

Using this representation, the Fisher information metric be-
comes

Note that the Fisher metric emphasizes coordinates that cor-
respond to low probabilities. The fact that the metric

when is not problematic since length of curves that
involves integrals over do converge. For more details on the
Fisher information metric in the parametric and the nonpara-
metric cases refer to [1].

Given two finite event sets of sizes and , respec-
tively, a conditional probability model reduces to an ele-
ment of for each . We may thus identify the space
of conditional probability models associated with and as
the product space

For our purposes, it will be more convenient to work with
the more general case of positive nonnormalized conditional
models. Dropping the normalization constraints

we obtain conditional models in the cone of matrices
with positive entries, denoted by . Since a normalized con-
ditional model is also a nonnormalized one, we can consider

to be a subset of . Results obtained for nonnor-
malized models apply then to normalized models as a special
case. In addition, some of the notation and formulation is sim-
plified by working with nonnormalized models. By taking this
approach, we follow the philosophy of [4] and [5].

In the interest of simplicity, we will often use matrix nota-
tion instead of the standard probabilistic notation. A conditional
model (either normalized or nonnormalized) is described by a
positive matrix such that . Matrices that cor-

respond to normalized models are (row) stochastic matrices. We
denote tangent vectors to using the standard basis

Tangent vectors to , when expressed using the basis of
the embedding tangent space are linear combinations
of such that the sum of the combination coefficients over
each row are , e.g.,

The identification of the space of conditional models as a
product of simplexes demonstrates the topological and dif-
ferentiable structure. In particular, we do not assume that the
metric has a product form. However, it is instructive to con-
sider, as a special case, the product Fisher information metric
on and . Using the above representation of tangent
vectors it reduces to

(5)

where or . A different way of
expressing (5) is by specifying the values of the metric on pairs
of basis elements

(6)

where if and otherwise.
In the characterization theorem we will make use of the fact

that and are dense
in and , respectively. The set of positive ra-
tional matrices is assumed to be the appropriate subset of .
Since continuous functions are uniquely characterized by their
values on dense sets, it is enough to compute the metric for pos-
itive rational models . The value of the metric on nonra-
tional models follows from its continuous extension to .

In Section IV, we define a class of transformations called con-
gruent embeddings by a Markov morphism. These transforma-
tions set the stage for the axioms in the characterization theorem
of Section V.

IV. CONGRUENT EMBEDDINGS BY MARKOV MORPHISMS OF

CONDITIONAL MODELS

The characterization result of Section V is based on axioms
that require geometric invariance through a set of transforma-
tions between conditional models. These transformations are a
generalization of the transformations underlying Čencov’s the-
orem. For consistency with the terminology of Čencov [3] and
Campbell [4] we refer to these transformations as Congruent
embeddings by Markov morphisms of conditional models.

Definition 4: Let be a set partition of
with . A matrix is called

-stochastic if

and
.
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Fig. 3. Congruent embedding by a Markov morphism of
p = (1=2; 1=4; 1=4).

In other words, -stochastic matrices are stochastic matrices
whose rows are concentrated on the sets of the partition .

For example, if then the following
matrix is -stochastic:

(7)

Obviously, the columns of any -stochastic matrix have pre-
cisely one nonzero element. If then an -stochastic ma-
trix is a permutation matrix.

Multiplying a row probability vector with an
-stochastic matrix results in a row probability

vector . The mapping has the following
statistical interpretation. The event is split into distinct
events stochastically, with the splitting probabilities given by the
-row of . The new event space, denoted by ,

may be considered a refinement of (if
) and the model is a consistent refinement of . For

example, multiplying with the matrix in
(7) yields

In this transformation, was split into with unequal
probabilities, was split into with equal probabilities
and was relabeled (Fig. 3)

The transformation is injective and therefore invert-
ible. For example, the inverse transformation to in (7) is

The inverse transformation may be interpreted as extracting a
sufficient statistic from . The sufficient statistic joins events
in to create the event space , hence transforming models on

to corresponding models on .
So far we have considered transformations of nonconditional

models. The straightforward generalization to conditional
models involves performing a similar transformation on the
response space for every nonconditional model fol-
lowed by transforming the explanatory space . It is formalized
in the definitions below and illustrated in Fig. 4.

Definition 5: Let and be a set of
matrices in . We define the row product
as

(8)

In other words, the th row of is the th row of the matrix
product .

Definition 6: Let be a sized partition of
and be a set of sized partitions of .
Furthermore, let be a -stochastic matrix and

a sequence of -stochastic matrices in
. Then the map

(9)

is termed a congruent embedding by a Markov morphism of
into and the set of all such maps is denoted by .

Congruent embeddings by a Markov morphism are injec-
tive and if restricted to the space of normalized models
they produce a normalized model as well, i.e.,

.
The component-wise version of (9) is

(10)

with the above sum containing precisely one nonzero term since
every column of and contains only one nonzero entry.
The push-forward map associ-
ated with is

(11)

where and are the bases of and
, respectively.

Using Definition 2 and (11), the pull-back of a metric on
through is

(12)

An important special case of a congruent embedding by a
Markov morphism is specified by uniform -stochastic ma-
trices defined next.

Definition 7: An -stochastic matrix is called uniform if
every row has the same number of nonzero elements and if all
its positive entries are identical.

For example, the following matrix is a uniform -stochastic
matrix for :
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Fig. 4. Congruent embedding by a Markov morphism of into .

We proceed in Section V to state and prove the characteriza-
tion theorem.

V. A CHARACTERIZATION OF METRICS ON

CONDITIONAL MANIFOLDS

As mentioned in the previous section, congruent embeddings
by a Markov morphism have a strong probabilistic interpreta-
tion. Such maps transform conditional models to other condi-
tional models in a manner consistent with changing the granu-
larity of the event spaces. Moving to a finer or coarser descrip-
tion of the event space should not have an effect on the models if
such a move may be expressed as a sufficient statistic. It makes
sense then to require that the geometry of a space of conditional
models be invariant under such transformations. Such geomet-
rical invariance is obtained by requiring maps to be
isometries. The main results of the paper are Theorems 1 and 2
below followed by Corollary 1. The proof of Theorem 1 bears
some similarity to the proof of Campbell’s theorem [4] which in
turn is related to the proof technique used in Khinchin’s charac-
terization of the entropy [11]. Throughout the paper, we avoid
Čencov’s style of using category theory and use only standard
techniques in differential geometry.

A. Three Useful Transformations

Before we turn to the characterization theorem, we show that
congruent embeddings by a Markov morphisms are norm pre-
serving and examine three special cases that will be useful later.

We denote by the th row of the matrix and by the
norm applied to vectors or matrices

Proposition 1: Maps in are norm preserving

Proof: Multiplying a positive row vector by an -sto-
chastic matrix is norm preserving

As a result, for any positive matrix and
hence,
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A map is norm preserving since

We denote the symmetric group of permutations over letters
by . The first transformation , parameterized by

and

is defined by being the permutation matrix that corresponds
to and being the permutation matrix that corresponds to

. The push-forward is

(13)

and requiring to be an isometry from to itself
amounts to

(14)

for all and for every pair of basis vectors ,
in .

The usefulness of stems in part from the following propo-
sition.

Proposition 2: Given , , , with
and there exists , such that

(15)

Proof: The desired map may be obtained by selecting ,
such that and ,

.

The second transformation , parameterized by
, is defined by and

being uniform matrices (in the sense of Definition
7). Note that each row of has precisely nonzero entries
of value and each row of has precisely nonzero entries
of value . The exact forms of and are immaterial
for our purposes and any uniform matrices of the above sizes
will suffice. By (11) the push-forward is

for some permutations , that depend on and the precise
shape of and . The pull-back of is

(16)

again, for some permutations , , , .
We will often express rational conditional models

as

where is the set of natural numbers. Given a rational model
, the third mapping

where

is associated with and which
are defined as follows. The -row of is required
to have nonzero elements of value . Since the
number of columns equals the number of positive entries, it is
possible to arrange the entries such that each columns will have
precisely one positive entry. then is an -stochastic matrix
for some partition . The th row of is
required to have nonzero elements of value

. Again, the number of positive entries

is equal to the number of columns and hence, is a legal
stochastic matrix for some . Note that the number of positive
entries, and also columns of does not depend on hence,

are of the same size. The exact forms of and
do not matter for our purposes as long as the above restriction
and the requirements for -stochasticity apply (Definition 6 ).

The usefulness of comes from the fact that it transforms
rational models into a constant matrix.

Proposition 3: For

where is a matrix of ones of size .
Proof: is a row vector of size whose

elements are

for some that depends on , . Multiplying on the left by
results in

for some that depends on .

A straightforward calculation using (11) and the definition of
above shows that the push-forward of is

(17)
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for some permutations , that depend on , , . Substituting
(17) in (12) gives the pull-back

(18)

where the first two summations are over and
and the last two summations are over

and

B. The Characterization Theorem

Theorems 1 and 2 in this subsection are the main result of the
paper.

Theorem 1: Let be a
sequence of Riemannian manifolds with the property that every
congruent embedding by a Markov morphism is an isometry.
Then

(19)

for some differentiable functions .
Proof: The following proof uses the isometry requirement

to obtain restrictions on first for , fol-
lowed by the case of , , and, finally, for the case

, . In each of these cases, we first characterize the
metric at constant matrices and then compute it for rational
models by pulling back the metric at through . The
value of the metric at nonrational models follows from the ra-
tional case by the denseness of in and the conti-
nuity of the metric.

Part I: for .
We start by computing the metric at constant matrices .

Given and , we can
use Proposition 2 and (14) to pull back through a corresponding

to obtain

(20)

Since (20) holds for all , , , with ,
we have that depends only on , , and

and we denote it temporarily by .
A key observation, illustrated in Fig. 5, is the fact that pushing

forward , for through any results in
two sets of basis vectors whose pairs have disjoint rows. As a
result, in the pull-back (12), all the terms in the sum represent
metrics between two basis vectors with different rows.

As a result of the above observation, in computing the pull
back through (16) we have a sum of metrics
between vectors of disjoint rows

(21)

Fig. 5. Pushing forward @ , @ for a 6= c through any f 2 results
in two sets of basis vectors S (black) and S (gray) for which every pair of
vectors f(v; u) : v 2 S ; u 2 S g are in disjoint rows.

since is a constant matrix with the same norm
as . Equation (21) holds for any and hence,

does not depend on and we write

for some

We turn now to computing for ra-
tional models . Pulling back through according
to (18) we have

(22)

Again, we made use of the fact that in the pull-back (18) all the
terms in the sum are metrics between vectors of different rows.

Finally, since is dense in and is contin-
uous in , (22) holds for all models in .

Part II: for , .
As before, we start with constant matrices . Given

with and with
we can pull back through with

and to obtain

It follows that depends only on , , and
we temporarily denote

As in Part I, we stop to make an important observation, illus-
trated in Fig. 6. Assume that pushes forward to a set of
vectors organized in rows and columns and
to a set of vectors organized in rows and columns. Then,
counting the pairs of vectors , we obtain pairs
of vectors that have the same rows but different columns and

pairs of vectors that have different rows and dif-
ferent columns.

Applying the above observation to the push-forward of
we have among the set of pairs , pairs

of vectors with the same rows but different columns and
pairs of vectors with different rows and different

columns.
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Fig. 6. Let f push forward @ to a set of vectors S (black) organized in z
rows and w columns and @ ; b 6= d to a set of vectors (gray) S organized
in z rows and w columns. Then counting the pairs of vectors S � S we
obtain zw w pairs of vectors that have the same rows but different columns and
zw (z� 1)w pairs of vectors that have different rows and different columns.

Pulling back through according to (16) and the above
observation we obtain

where the first term corresponds to the pairs of vectors with
the same rows but different columns and the second term cor-
responds to the pairs of vectors with different rows
and different columns.

Rearranging and dividing by results in

It follows that the above quantity is independent of and we
write

for some which after rearrangement gives us

(23)

We compute next the metric for positive rational matrices
by pulling back through . We use again the obser-

vation in Fig. 6, but now with , ,
and . Using (18) the pull-back through

is

(24)

The first term in the sums in (24) corresponds to the
pairs of vectors that have different rows and different columns
and the second term corresponds to the pairs of vectors
that have different columns but the same row.

As previously, by denseness of in and conti-
nuity of (24) holds for all .

Part III: for , .
As before, we start by computing the metric for constant ma-

trices . Given , , , we pull back through with

to obtain

It follows that does not depend on , , and we
temporarily denote

In the present case, pushing forward two identical vectors
, by a congruent embedding results in two identical

sets of vectors , that we assume are organized in rows and
columns. Counting the pairs in we obtain pairs of

identical vectors, pairs of vectors of identical rows
but different columns and pairs of vectors of different
rows and columns. These three sets of pairs allow us to organize
the terms in the pull-back summation (12) into the three cases
under considerations.

Pulling back through (16) we obtain

which after rearrangement and dividing by gives

(25)

It follows that the left-hand side of (25) equals a function
for some independent of and resulting in

Finally, we compute for positive rational
matrices . Pulling back through (18) and using
the above division of with ,
we obtain
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(26)

Since the positive rational matrices are dense in and the
metric is continuous in , (26) holds for all models

.

The following theorem is the converse of Theorem 1.

Theorem 2: Let be a sequence of Rie-
mannian manifolds, with the metrics given by

(27)

for some . Then every congruent embed-
ding by a Markov morphism is an isometry.

Proof: To prove the theorem we need to show that

(28)

Considering arbitrary and we have by
(12)

(29)

For , using the metric form of (27), the right-hand side
of (29) reduces to

since and are stochastic matrices.
Similarly, for , , the right hand side of (29) reduces

to

(30)

Recall from (10) that

Summing over we obtain

(31)

Since every column of has precisely one nonzero element, it
follows from (31) that is either or which turns
(30) into

Finally, for the case , the right-hand side of (29)
becomes

Since in the double sum of (10)

there is a unique positive element, is either
or . It follows then that (29) equals

We have shown that for arbitrary and

for each pair of tangent basis vectors , and hence the
condition in (28) holds, thus proving that

is an isometry.

C. Normalized Conditional Models

A stronger statement can be made in the case of normalized
conditional models. In this case, it turns out that the choices of

and are immaterial and (19) reduces to the product Fisher
information, scaled by a constant that represents the choice of
the function . The following corollary specializes the charac-
terization theorem to the normalized manifolds .

Corollary 1: In the case of the manifold of normalized con-
ditional models, (19) in Theorem 1 reduces to the product Fisher
information metric up to a multiplicative constant.
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Proof: For expressed in the coordinates
of the embedding tangent space

we have

since and for we have
for all . We see that the choice of and is immaterial and
the resulting metric is precisely the product Fisher information
metric up to a multiplicative constant , that corresponds
to the choice of .

VI. A GEOMETRIC INTERPRETATION OF LOGISTIC REGRESSION

AND ADABOOST

In this section, we use the close relationship between the
product Fisher information metric and conditional -divergence
to study the geometry implicitly assumed by logistic regression
and AdaBoost.

Logistic regression is a popular technique for conditional in-
ference, usually represented by the following normalized con-
ditional model:

where is the normalization factor [12]. A more general form
[5] that is appropriate for is

(32)

where are arbitrary feature functions. The
model (32) is a conditional exponential model and the parame-
ters are normally obtained by maximum-likelihood estimation
for a training set

(33)
AdaBoost is a linear classifier, usually viewed as an incre-

mental ensemble method that combines weak learners [13]. The
incremental rule that AdaBoost uses to select the weight vector

is known to greedily minimize the exponential loss

(34)

associated with a nonnormalized model

By moving to the convex primal problems that correspond to
maximum likelihood for logistic regression (33) and minimum
exponential loss for AdaBoost (34), a close connection between

the two algorithms appear [5]. Both problems select a model
that minimizes the -divergence

(35)

to a uniform distribution where is the empirical distribution
over the training set .

The minimization is constrained by expectation equations
with the addition of normalization constraints for logistic
regression. The -divergence above applies to nonnormalized
conditional models and reduces to the conditional Kull-
back–Leibler divergence for normalized models. The condi-
tional form above (35) is a generalization of the nonnormalized
divergence for probability measures studied by Csiszár [14].

Assuming , we may approximate
by a second-order Taylor approximation around

The first-order terms

(36)

zero out for . The second-order terms

at are . Substituting these expressions
in the Taylor approximation gives

which is the squared length of
under the metric (19) for the choices
and .

The -divergence which both logistic regression
and AdaBoost minimize is then approximately the squared
geodesic distance between the conditional models
and under a metric (19) with the above choices of

. The fact that the models and
are not strictly positive is not problematic, since by the conti-
nuity of the metric, Theorems 1 and 2 pertaining to apply

also to its closure —the set of all nonnegative conditional
models.

The preceding result is not restricted to logistic regression
and AdaBoost. It carries over to any conditional modeling tech-
nique that is based on maximum entropy or minimum Kull-
back–Leibler divergence.

VII. DISCUSSION

We formulated and proved an axiomatic characterization of a
family of metrics, the simplest of which is the product Fisher in-
formation metric in the conditional setting for both normalized
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and nonnormalized models. This result is a strict generalization
of Campbell’s and Čencov’s theorems. For the case , The-
orems 1 and 2 reduce to Campbell’s theorem [4] and Corollary
1 reduces to Čencov’s theorem ([3, Lemma 11.3]).

In contrast to Čencov’s and Campbell’s theorems, we do not
make any reference to a joint distribution and our analysis is
strictly discriminative. If one is willing to consider a joint dis-
tribution it may be possible to derive a geometry on the space
of conditional models from Campbell’s geometry on the
space of joint models . Such a derivation may be based
on the observation that the conditional manifold is a quotient
manifold of the joint manifold. If such a derivation is carried
over, it is likely that the derived metric would be different from
the metric characterized in this paper.

As mentioned in Section III, the proper framework for con-
sidering nonnegative models is a manifold with corners [7]. The
theorem stated here carries over by the continuity of the metric
from the manifold of positive models to its closure. Extension
to infinite or poses considerable difficulty. For a brief dis-
cussion of infinite dimensional manifolds representing densities
see [1, pp. 44-45].

The characterized metric (19) has three additive components.
The first one represents a component that is independent of the
tangent vectors, but depends on the norm of the model at which
it is evaluated. Such a dependency may be used to produce the
effect of giving higher importance to large models, that repre-
sent more confidence. The second term is nonzero if the two
tangent vectors represent increases in the current model along

. In this case, the term depends not only on the norm of
the model but also on . This may be useful
in dealing with nonnormalized conditional models whose values
along the different rows are not on the same numeric
scale. Such scale variance may represent different importance
in the predictions made, when conditioning on different . The
last component represents the essence of the Fisher information
quantity. It scales up with low values to represent a kind
of space stretching, or distance enhancing when we are dealing
with points close to the boundary. It captures a similar effect as
the log likelihood of increased importance given to near-zero
erroneous predictions.

Using the characterization theorem, we give for the first time
a differential geometric interpretation of logistic regression and
AdaBoost whose metric is characterized by natural invariance
properties. Such a geometry applies not only to the above
models, but to any algorithmic technique that is based on
maximum conditional entropy principles.

Despite the relationship between the -divergence
and the geodesic distance , there are some important
differences. The geodesic distance not only enjoys the sym-
metry and triangle inequality properties, but is also bounded. In
contrast, the -divergence grows to infinity—a fact that causes
it to be extremely nonrobust. Indeed, in the statistical literature,
the maximum-likelihood estimator is often replaced by more ro-

bust estimators, among them the minimum Hellinger distance
estimator [15], [16]. Interestingly, the Hellinger distance is ex-
tremely similar to the geodesic distance under the Fisher infor-
mation metric. It is likely that new techniques in conditional
inference that are based on minimum geodesic distance in the
primal space, will perform better than maximum entropy or con-
ditional exponential models.

Another interesting aspect is that maximum entropy or con-
ditional exponential models may be interpreted as transforming
models into where is the empirical distribution of the
training set. This makes sense since two models become
identical over that do not appear in the training set, and indeed
the lack of reference data makes such an embedding workable. It
is conceivable, however, to consider embeddings using
distributions different from the empirical training data distri-
bution. Different may have different importance associated
with their prediction and some labels may be known
to be corrupted by noise with a distribution that depends on .
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