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Abstract for instance, local Rademacher boundsZh [These bene-

fits raise the question whether the slower kernel formutatio
The random Fourier features methodology can be used tocan be avoided while preserving its predictive power.

approximate the performance of kernel classifiers in linear ~ Unfortunately at least in the visual recognition commu-
time in the number of training examples. However, there nity, the current answer is still no. In practice there seems
still exists a non-trivial performance gap between the ap- to be a nontrivial performance difference between RF ap-
proximation and the nonlinear kernel classifiers, especial proaches and kernel approaches. Although this gap (0.5%
ly for the exponentiak? kernel, one of the most powerful — 4%) is usually not largel[d, it is still too significant to
models for histograms. Based on analogies with Chebyshevgnore. Multi-stage methods still play a major role for ob-
polynomials, this paper proposes an asymptotically conver ject detection 10], where RF and more expensive kernel
gent analytic series of thg? kernel that is used in the ran- methods can be used as two consecutive stages [
dom Fourier approximation of the exponentigt kernel. This paper aims to reduce the approximation gap with-
The new series removes the need to use periodic approxiout losing the advantageot¥n) time complexity. The t-
mations to they? function, as typical in previous methods, wo main contributions are: (a) we propose a new conver-
and improves the classification accuracy. Besides, out-of-gent analytic series for the? distance commonly used for
core principal component analysis (PCA) methods are in- histogram features, and (b) we exploit principal component
troduced, which can reduce the dimensionality of the ap- analysis (PCA) on the obtained random features, in order to
proximation and achieve better performance, with only an improve performance without additional complexity.
additional constant factor to the time complexity. Espe-  The starting point of our exploration is the two-stage ap-
cially, when PCA is performed jointly on the training and proximation of the exponential chi-square kernel (exp-
unlabeled testing data, a further performance improvemen-
t is achieved. The proposed approaches are tested on the k(x,y) = exp(—x*(z,y)) Q)
PASCAL VOC 2010 segmentation and the ImageNet ILSVR-

C 2010 datasets, and give statistically significant improve ProPosedin<]. Empirically we found thatthis has the best
ments over previous approximation methods. performance in visual recognition, over all the RF kernel

approximations that have been proposed so far. The two-
stage methodZ/] first uses the Fourier transform on the
non-negative orthant to approximate tp€ distance as an
inner product. Then another standard RF for the Gaussian
Random Fourier (RF) featurefd, 25, 24, 18] is a kernel is used to approximate the final exp-
promising methodology for large-scale classification.sk u Previous inner-product approximation for thé dis-
es Monte Carlo sampling in the frequency domain to con- tance p5] relied on a periodic version of the function. The
struct an embedding such that, linear functions on the em-additional periodicity parameter is rather sensitive. rife
bedding are asymptotically convergent approximations to well-tuned, the approximation quality can deteriorate whe
the nonlinear functions attainable in kernel methods. The the histograms are out of the periodic rangg[ In this pa-
benefit of this transition is that now the time complexity of per derive an analytic recurrence formula to obtain asymp-
many learning methods will be linear in the number of ex- totically convergent approximations to tiyé distance. Ex-
amplesn, compared to at leag)(n?-?) for the kernel meth-  periments show that the new convergent approximations ob-
ods. Therefore, RF makes possible to use complicated nontain better performance than existing periodic methods.
linear learning models in the massive datasets that are in- Inaddition, in order to obtain more compact embeddings
creasingly common nowadays. RF also enjoys most of thefor large-scale learning when the data cannot fit into mem-
learning rate and generalization results of kernel methods ory, we exploit an out-of-core version of PCA that adds lit-

1. Introduction



tle computational overhead to the RF approximation, espe-the number of random features after the RF embedding. The
cially when combined with least squares and other methodsall-ones vector is described hy the all-zeros by, and the
based on quadratic loss (e.g. group LASSO). PCA allows usimaginary unit byj. = is used for complex conjugate. All

to reduce the number of dimensions required for classifica-kernels are positive semi-definite kernels.

tion, and relaxes memory constraints when multiple kernels  In [25], the class ofy-homogeneoukernels is intro-
have to be approximated by RF. We also explore using theduced:

unlabeled test set to better estimate the covariance niatrix k(cz,cy) = "k(z,y),Ve = 0. @
PCA, leading to a better selection of the frequency compo- Choosing: = ——, ay-homogeneougermel can be written
nents and improved classification performance. as.
k(z,y) = ¢ "k(cz,cy) = (zy) 2 k \/7 \/7
2. Related Work
= (2y)?K(logy — log ) ®3)

Speed-ups to kernel methods based on low-rank approx-
imations of the kernel matrix have been proposed before wherek is an even function, i.eK(—x) = K(z).
[13, 1]. These methods are effective, but applying the ker- ~ DenotingA = logy — log z, thel — x* kernel is
nel machine on new data requires slow kernel computations
between the test and training examples. An alternative is to ko(z,y) =1-> % => ijl'% (4)
use the Nystrom method&{] that sub-samples the training P Ty A
set and operate on a reduced kernel matrix. Although this(assumingzi x; = 1). In each dimension we have
works well in practice, the asymptotic convergence rate of

A
this approximation is slowO(n~%) [11], wheren is the ko(z,y) = — + v T = Vaysech(3), (5)
number of examples used for the approximation. [

A topic of recent interest is coding image features. The wheresech(x ) = W is the hyperbolic secant function
goal of such methods is to achieve good performance withyhose Fourier transform issech(rw). Using the inverse
linear classification or regression after coding the fetur Fourier transform to mapsech(7rw) back tok(z, y)

[27, 15). Hierarchical coding schemes with deeper struc- o

tures have also been proposeéd][ Both sparse and dense ko(z,y) = /zy / 7108 7108 Vgech (mw) duw
coding schemes have proved successful. In fact, the super- w7

vector coding 9] and the Fisher kernelg[] have been the = / D, (x)" Dy, (y)dw (6)

best performers in the ImageNet large-scale image classifi-

cation challenge’[(]. Comparing between coding methods whered,, (z) = \/ze 7«08, /sech(rw).

and RF, we note that RF usually starts with bag-of-word  In [25], the functione=7«1°8 Zsech(7w) is approximat-

vector quantization while coding schemes sometimes started with a periodic function, which is then approximated

with raw image features and therefore have an extra layerwith finite Fourier coefficients (hereafter called & ap-

of processing freedom. Nevertheless, replacing hard clus-proximation as a shorthand for Vedaldi-Zisserman). How-

tering with a soft-assignment clustering may improve the ever,e =7« 1°6#sech(nw) is inherently aperiodic. As a con-

performance of the histogram method to become on parsequence the approximation error is low whésg z| is s-

with some coding schemeg]|[ Alternatively, one can use mall, but excessively high whedog z| is larger than the

a Gaussian matching kernel approximated with RF, insteadperiod. Convergence is attained ifj] because the intro-

of comparing bins independently][ duced aperiodic bias is cancelled with the fagyary when
The dictionaries of the aforementioned coding schemesz ory is small. However, uneven biases in different regions

are usually extremely large (e.g., both the Fisher kerngtl an may impact performance in learning. Here we pursue an al-

supervector coding usually require more than 200k dimen-ternative derivation that is analytic and asymptoticatipc

sions []) and the generation of the dictionary is often ex- vergent, even without the factgfzy. We describe the main

tremely time-consuming. RF is theoretically guaranteed to ideas below and provide more details in the supplementary

approximate the kernel model with a reasonable asymptoticmaterial.

convergence rate’f]. It would neither require too many Because the kernel is symmetric the imaginary part of

dimensions nor training for the dictionaries. Thereforisit ~ the inverse Fourier transformis leading to

well worth exploring as an alternative approach. ko(z,y) = \/@/ cos(w(log = — log y))sech (rw)dw

3. The Chebyshev Approximation

\/@/ (cos(w log ) cos(w log y) @
Throughout this paper we use€ to denote the training o

set withn training examples and dimensions.D denotes + sin(w log z) sin(w log y))mdw



Using a change of variable = 2 arctan e™, the integral
becomes

ko(z,y) = (8)

v/ T 1 1
% /0 (cos(; log | tan %| log x) cos(; log | tan %| logy)

.1 z .1 z

+ sm(; log | tan §| log x) sm(; log | tan 5 |logy))dz.

Since the functions cos(Z log|tan Z|logz) and
sin( log | tan Z|logz) are periodic and even, they

can be represented using discrete-term Fourier cosiresseri

Ja(z —i— Z an(z) cos( 9)
Since for all integers andm,
/7r cos(nx) cos(max)dx = {0 n#m ,
0 w/2 n=m
we have
/ fo(2) fy(2 dz—i QZGZ ai(y) (10)

which offers a natural orthogonal decomposition. A vector
a; = [ao( )/ V2, al( ) 2(z), ..., an(x)] guarantees

thatala, = L [ f2(2)f,(2)dz.
Obtaining the coefﬁuents require  comput-
ing the integrals [ cos(Llog(tan%)logz) and

Jy sin(£ log(tan ) log z). Since these functions are
symmetric/antisymmetric half of the coefficients in eithe
cosine series are zero.
two series into a new one,,(x), which contains the even
Fourier coefficients from the cosine term and the odd
coefficients from the sine term.

In fact, using integration-by-parts we can represent the

Algorithm 1 Approximation of the expg? kernel based on

the Chebyshev approximation of tiyé distance.

input : n x d data matrixX = [X{, X7, ..., X", Pa-
rametersn, D.

output : The random Fourier featut of the expy? ker-
nel.
1: Compute fork =0,...,m —1

2lo Tij
F((—1)F =22y (245)

+(k = 2)cp—2(2i5)), b1
cr(Tiz) = — Y2log i o (1) h=1

2%, T ,

-

for each dimensiopi of each example;. Denote:(X;)
the md x 1 vector constructed by concatenating al-
| Ck(xij),j = 17 . ,d.
: Construct and x D matrix (2, where each entry is sam-
pled from a normal distribution/(0, 2).
Construct aD x 1 vectord which is sampled randomly
from [0, 27]P
4: Z; = cos(c(X;)2 + b) is the RF feature foX; [27].

3:

to use the change of varialle= arccos(x) in order to con-

vert an aperiodic integral into a periodic one, enabling the
application of Fourier techniques. Our variable substtut

z = arctane® serves a similar purpose. The same tech-
nigue can be applied in principle to other kernels, such as
the histogram intersection and the Jensen-Shannon kernel.
However, the analytical approximation due to integration-

Therefore, we can combine thedy-parts may not extend easily. We plan to pursue these

extensions in the future.

4. Convergence Rate of the Chebyshev Ap-
proximation

coefficients from one series (either the cosine term or the

sine term) by coefficients of the other series. After some al-
gebraic derivations (see supplementary material) we obtai
the following analytic form ok, (x):

T(—D)FHEZe () + (k—2)ex—2(x), k>1

cx(z) = { ‘fifg””c()(m), k=1
z2:1’ k=0

(11)

with ko(z,y) = >, cr(@)cr(y).

Applying the calculation for all dimensions yields the
new Fourier embedding for the? kernel. Then, we fol-
low [24] and use RF to approximate a Gaussian kernel
on ¢(z), to obtain the approximation of the exg-kernel
k(z,y) = exp(—vyx?(x,y)). The complete procedure is p-
resented in Algorithnl We name the above algorithm as

the Chebyshev approximation because it draws ideas from
Chebyshev polynomials and the Clenshaw-Curtis quadra- |ko(z:, i) — c(z:)”

ture [4]. A central idea in the Clenshaw-Curtis quadrature is

In this section we present an analysis on the asymptotic
convergence rate of the Chebyshev approximation. Since
(112) is exact, we can apply standard results on Fourier series
coefficients {I], which says the convergence rate depends on
the smoothness of the function that is approximated.

m

Lemma 1. |ko(xi,yi) — Y peq crl(@i)cr(yi)] < TiYi
whereC is a constant.
Proof. Since M represents Fourier series for

os(+ log|tan Z|logz;) and sin(Zlog|tan Z|logx;),
which are both absolutely continuous but not continuously
differentiable (it oscillates at = 0), we have:

0 < mem(z:) < VOVTL
and consequentially

)l < Y 5

k>m

(12)

C
VY < e VA a



Using Lemmal it is straightforward to prove that

Theorem 1. [ko(z,y) — X, X7, er(@i)er(yi)l < &
Whenzi xr; = Zi Yy, = 1.

Proof. Use Cauchy-Schwarz inequality,

lko(z,y) — > >y en(@i)ew(ys)| < % > i VTili
S%\/ZiﬂfiZiyi:,%- O

Although our method converges slower than Y&ap-
proximation, our convergence is independent on the factors
vZy;- Whenx; or y; is small, theVZ approximation can
only guaranteé% < C; where( is a constant close

to 1, but our approximation can guarant@éf;_’—yi) < £,
Yy m
In this case we perform much better théa. Since the im-

age histograms considered in this work often consist many

vector. In most cases, the speed of learning algorithms de-

teriorates quickly when the data cannot be load in memory.
PCA is a natural choice to use fewer dimensions for an ap-
proximation of the same quality. In fact, it is one of the very
few possible choices in high dimensions, since many other
techniques like quasi-Monte Carlo suffer from the curse of
dimensionality — the convergence rate decreases exponen-
tially with the number of dimensions], which makes them
unsuitable for RF where many dimensions are needed.

Another interesting aspect of RF-PCA is it can bring an
unexpected flavor of semi-supervised learning, in that one
can use unlabeled test data to improve classification accura
cy. RF-PCA amounts to selecting the relevant dimensions
in the frequency space. By considering both the training and
testing data during PCA, frequencies that help discringinat
test data will more likely be selected. In the experiments

proximation is expected to work slightly better in general.
We can numerically simulate the constéhtor differen-

the computation of PCA only on training data.

t  values by computing the empirical bounthx,,, %

Algorithm 2 Out-of-Core Principal Component Analysis.

The simulation results with00, 000 < m < 500, 000 are
presented in Figurg. It can be seen that the approximation
is more accurate if the input values are larger, however, the
error on the smaller input values can be offset by {/e
factor, making the effective constant small in all cases.

a
3

2.5

02 03 04 05 06 07 08 09
Input x on one dimension

Figure 1. A plot of theC' in Theorem 1 for different input values.
The L, error of the kernel approximation is decided @y(Theo-
rem 1). The value” is large when the histogram value is small,
which can be offset by the/z factor multiplied to it.
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5. Principal Component Analysis of Random
Features on Multiple Descriptors

Another rather orthogonal strategy we pursue is principal
component analysis after obtaining random features. hisi
useful for reducing the memory footprint when multiple im-
age descriptors are used (common in computer vision, e.g
[14]) and RF embeddings are computed for each of them. It
is known that the performance of RF improves when more
random dimensions are used. However, when the RF of
multiple kernels are concatenated: e.g. with 7 kernels and
7,000 RF dimensions for each kernel, the learning phase fol-

input : n x d data matrixX = [X{, X7,..., XT]T. Out-

put vectory. Number of dimensiorD to retain after
PCA.

1: Divide the data intdk chunks, calledX (), X(a),...

)

2 H=0,m=0,v=

3:fori=1—kdo

4:  Load thei-th chunkX ;) into memory.

5. Use Algorithm1 to compute the RF featutg;, for
X’L .

6: H(; H + Z(Ti)Z(i), m=m+ Z(Ti)l, v=v+ Z(Tt.)y

7: end for

8: H=H — %mmT.

9: Compute eigen-decompositidh = UDU?”. Output

the first D columns ofU asU, the diagonal matriD,
and the input-output product

The main problem is in large-scale datasets, the data can-
not be fully loaded into memory. Therefore PCA needs
to be performed out-of-core, a high-performance comput-
ing term depicting this situation (unable to load data into
memory). As have been discussed extensively in the high-
performance computing literature (e.g27]), the way to
perform out-of-core PCA in linear time is not by singular
value decomposition on the RF featur&s but rather by
performing eigenvalue decomposition for the centered co-
variance matrixz” (I — £117)Z, which can be computed
out-of-core by just loading a chunk &f; into memory at a
time, compute their RF featutg, compute the covariance
matrix and then delete the RF features from memory. Then
an eigen-decomposition gives the transformation mairix
for PCA. We denoté/ as the matrix obtained by selecting
the first D dimensions ofU corresponding to the largest

lowing RF needs to operate on a 49,000 dimensional featureeigenvalues (Algorithn?). Denote the mean vector of the



input matrixZ = £ Z71, then
1

n

Z=(Z2-12"0 =1 - =11")20 (13)
is the feature vector obtained after PCA projection.

It is very convenient to perform regression with a
guadratic loss after PCA, since only the Hessian is neede
for optimization. This applies not only to traditional I¢éas
squares regression, but also to the LASSO, group LASSO,
and other composite regularization approaches. In this cas
the projections need not be performed explicitly. Instead,

notice that onlyZ” Z and Z”'y are needed for regression:
_1
n

otz (1 - %IIT)y

z'z = U0"z"(1-=-11")z0

Z"y (14)
It follows that only Z7' Z, Z*1 and Z*'y have to be com-
puted. All terms can be computed out-of-core simultane-

ously. Algorithm3 depicts this scenario. Under this PCA

approach the data is loaded only once to compute the Hes-

sian. Additional complexity oO(D?) is necessary for ma-
trix decomposition onH. If ridge regression is used, the
H' after decomposition is diagonal therefore o6lyD) is

needed to obtain the regression results. The bottleneck of

this algorithm for large-scale problems is undoubtedly the
computation of the initial Hessian, which involves reading
multiple chunks from disk.

Algorithm 3 Learning after PCA with Quadratic Loss.

input : n x d data matrixX = [X{, X7 ..., X7, Out-
put vectory. Number of dimensiorD to retain after
PCA.

1. Perform out-of-core PCA using Algorithéh

2. H = UTHU = D, the firstD rows and columns of
the diagonal matriD.

30 =0T - 1(1Ty)UTm.

4: Perform learning o, v/, e.g., for linear ridge regres-
sion where the optimization ig'g min,, ||w? Z —y||2+
A|Jwl|?, the solution isw = (D + A\I)~'v'.

5: UseUTw instead ofw as a function of the original in-

puts: f(z) = w' Uz — Lw”Um, in order to avoid the
projection for the testing examples.

d"P

wl'U(Z — LZ17), thenUw can be the weight vector for
the original input, with the addition of a constant term.

Algorithm 4 Two-stage Principal Component Analysis
when learning with multiple kernels.
ut : n x ddatamatrixX = [X{, X7, ..., X7, Out-
put vectory. Number of dimensiorD to retain after
PCA.
: Perform out-of-core PCA using Algorithéh
fori=1— kdo
Load thei-th chunkX ;) into memory.
Use Algorithm 1 to compute the RF featurg;) for
X(3), with the same randomization vectarsas be-
fore.
Z = (Z(z) - %1mT)U.
H =H +ZTZ v =v +ZTy
end for
: Performlearning ot?’, v'. E.g., for linear least squares
where the optimization isrg min,, ||w”Z — y||?, the
solution isw = H'~'v'.
9: UseUw instead ofw as a function of the original in-
puts: f(z) = w Uz — LwUm, in order to avoid the
projection step for the testing examples.

Rk
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We note that out-of-core least squares or ridge regression
scales extremely well with the number of output dimensions
¢, which can be used to solve one-against-all classification
problems withc classes. In Algorithn® or 4, Z7y will
be computed i (nDc) time along with the Hessian. After
the inverse of Hessian is obtained, only a matrix-vectormul
tiplication costingO(D?c) is needed to obtain all the solu-
tions, without any dependency en Thus the total time
of this approach with: classes i<O(nDc + D?c) which
scales very nicely witle. Especially compared with oth-
er algorithms that need to perform the full training proce-
dure on each class. Although tlig loss is not optimal for
classification, in large-scale problems (e.g. ImageNett) wi
1,000—10, 000 classes, the out-of-core ridge regression can
still be used to generate a fairly good baseline result dyick

6. Experiments

Our experiments are conducted on two extremely

The more sophisticated case is when PCA needs to bechallenging datasets, the PASCAL VOC 2010 and

performed separately on multiple different kernel approxi
mators, i.e.Z = [Z(M 72?2 ... ZW], where eaclZ ™ is the

the ImageNet 1] ILSVRC 2010 (http://www.image-
net.org/challenges/LSVRC/2010/) . These benchmarks re-

RF feature embedding of each kernel. This time, the need toveal the different performance among approximation meth-

computeZz®” Z() rules out tricks for simple computation.
The data needs to be read in twice (Algoritd first to
perform the PCA, and then uggto transformX in chunks
in order to obtainZ andZ” Z. But the full computation is
still linear in the number of training examples.

In both cases, the projection is not required for the test-
ing examples. Because wheneveiis obtaineduw” Z =

ods, which would otherwise be difficult to observe in sim-
ple datasets. We conduct most experiments on the medium-
scale PASCAL VOC data in order to compare against kernel
methods. For this dataset, we use exclusivelytthim

andval datasets, which have 964 images and around 2100
objects each. Classification results are also shown on the
ImageNet dataset to demonstrate the efficiency of the ker-



nel approximation. The experiments are conducted using ar6.2. Resultswith Multiple Kernelson the PASCAL
Intel Xeon E5520 2.27GHz with 8 cores and 24GB mem- VOC Segmentation Challenge
ory. The algorithml is parallelized using OpenMP to take

advantage of all cores. In this section the image segmentation task from PAS-

CAL VOC is considered, where we need to both recognize
objects in images, and generate pixel-wise segmentations
6.1. Results on the Chebyshev Approximation for these objects. Ground truth segments of objects paired
with their category labels are available for training.

. A recent state-of-the-art approach trains a scoring func-
scale problem from the PASCAL VOC dataset. For train- tion for each class on many putative figure-ground segmen-

Ing, \;v_e Ltjse segfmentT that blfsé rt?at;:h ezicrr]}_ground trut:] S€Gation hypotheses, obtained using the constrained paramet
e e e o oo St o min <t metod . T crestesaage sl eamng
. . ~>" task even if the original image database has moderate size:

matching segments_ln theal s_et_are used as test. This with 100 segments in each image, training 96 images
creates a problem with 5100 training and 964 test segmentsCreates a learning problem with aroubd, 000 training

The  methods  tested  are Chebyshev , examples. This training set size is still tractable for leérn
PCA-Chebyshev and VZ. The kernel approximation approaches, thus we can directly compare against them.
accuracies for each method are shown in the supplementary Tyo experiments are conducted using multiple kernel
materials. For reference, we also report classification gpproximations of exp<? kernels. The first one consid-
results on thex> kernel without exponentiating ashi2 , ers only SIFT on the foreground and background, in or-
as well as the skewed® kernel proposed in1[f] as  der to compare against a sparse coding method EFJK [
Chi2-Skewed . Because of the randomness in the Monte which works on|y on SIFT. The second one is on 7 differ-
Carlo approximation, different random seeds lead to entimage descriptors, which include 3 HOGs at different
quite significant performance variations. Therefore the scales, BOW on SIFT for the foreground and background,
experiments are all averaged over 20 trials of random seedsand BOW on color SIFT for the foreground and background
Within each trial, the same random seeds are used for all[ ]. The VOC segmentation measure is used to compare
methods. FoPCA-Chebyshev , the initial sampling is  the approaches. This measure is the average of pixel-wise
done using three times the final approximating dimensions, average precision on the 20 classes plus background. To
and PCA is performed to reduce the dimenSiona"ty to the avoid Compncations and for a fair Comparison, the post_
same level as the other two methods. We test the classificaprocessing step7] is not performed and the result is ob-
tion performance of these kernels with two different types tained by only outputing one segment with the highest s-
of features: a bag of SIFT words (BOW) feature of 300 core in each image. The method used for nonlinear estima-
dimensions, and a histogram of gradient (HOG) feature of tion is one-against-all support vector regression (SVR) as
1700 dimensions. The classification is done via a linear in [ ], and the method for linear estimation is one-against-
SVM using the LIBSVM library (empirically we find the  aj| ridge regression. The latter is used since fast solation
LIBLINEAR library produces worse results in this case for linear SVR problems are not yet available for out-of-
for dense features). The parameter in LIBSVM is setto  core dense features. We want to avoid stochastic gradient
50, the kernel to be approximated is a expkernel with  methods (e.g., 1) since these are difficult to tune to ful-
B = 1.5. ForVZ, the period parameter is set to the optimal | convergence, which can potentially bias the results. We
one specified in{5]. For each kernell0 dimensions are  average over 5 trials of different random seeds.
used to approximate the” distance in each dimension. For the first experiment, we use 1,000 dimensions for
More dimensions have been tested but they did not improveggch descriptor. EMK is performed with a 1000-words
the performance; therefore those results are not included. gow without a spatial pyramid, and RF is performed by

The results are shown in Tabldsand 2. It can be expanding a 300-words BOW to 1,000 RF dimensions. The
seen that theChebyshev approximation almost always result is shown in the upper part of Talbde where one
gives a slight performance edge over Mg approxima-  can see thaEMKIis vastly inferior to the RF approach in
tion. And PCA-Chebyshev is always significantly bet- Chebyshev-BOW-only . It seems without the spatial
ter than the other two. This should not be surprising since pyramid, this feature encoding approach is not performing
PCA-Chebyshev takes advantage of three times the di- as well as approximations to the exg-kernel.
mensions than the other methods (before the dimensional- For the second experiment, the resultGliebyshev ,
ity reduction). With7000 approximating dimensions and VZ and PCA-Chebyshev is shown. Here
good random seeds, tRRECA-Chebyshev methodis able  PCA-Chebyshev takes the principal components on
to match the performance of the kernel methods, a non-both the training and the test set. Additionally we
trivial achievement for the exg? kernel. show results taking PCA on the training set only, under

To test the Chebyshev approximation, we take a small-



Number of Dimensions 3000 5000 7000
Chi2 29.15% 30.50% 31.22%
Chi2-Skewed 30.08%:+ 0.74% | 30.37 %+ 0.63% | 30.51 %+ 0.35 %
Chebyshev 31.26%4 0.62% | 32.75%d- 0.71% | 33.03% 0.87%
PCA-Chebyshev 32.74%+ 0.62% | 33.35%+0.68% | 33.49%=+ 0.45%
VZ 31.37%4 0.77% | 32.19 %+ 0.83% | 32.66% 0.78%
Exact expy? 34.34%

Table 1. Classification accuracy of exs-kernel when the? function is approximated with different approximations,aHOG descriptor.

Results for theChi2 andChi2-Skewed kernels are also shown for a reference.

Number of Dimensions 3000 5000 7000
Chi2 41.91% 42.32% 42.12%
Chi2-Skewed 39.82%+ 0.73% | 40.79%+ 0.55% | 40.90%=+ 0.82%
Chebyshev 41.48%+ 0.95% | 42.52%+ 0.88% | 42.65%=* 0.47%
PCA-Chebyshev 42.80%=+ 0.74% | 43.25%+ 0.55% | 43.42%+ 0.42 %
VZ 41.08%+ 1.22% | 42.06 %4 0.92% | 42.46%+ 0.72 %
Exact expx? 44.19%

Table 2. Classification accuracy of exp-kernel when they? function is approximated with different approximations, @ BOW-SIFT
descriptor. Results for thehi2 andChi2-Skewed kernels are also shown for a reference.

PCA-training-Chebyshev For Chebyshev and Method Performance
VZ, we take 4,000 RF dimensions for each kernel, which EMK 8.52%

totals 28,000 dimensions (the largest number that can fit Chebyshev-BOW-only | 14.95% + 0.67%
in our computer memory). For PCA, we retain a total of Chebyshev 26.25% + 0.41%
19,200 dimensions, particularly since additional dimen- VZ 25.57% + 0.57%

sions do not seem to improve the performance. In addition,

we compare to thBlystr dmmethod P €] by taking 28,000

random training examples and evaluating the combined Nystrom 27.55% + 0.49%

kernel of each example against them for the feature vector. Kernel SVR 30.47%
The results in this experiment are computed using Table 3. VOC Segmentation Performance on vaé set, mea-

the pixel average precision measure of VOC, and aresured by pixel AP with one segment output per image (no post-

shown in the latter part of Tabl8. The trend resem-  processing). averaged over 5 random trials. The upper pans

bles the last experiment, @&8CA-Chebyshev is bet- results on only BOW-SIFT features for the foreground andkbac

ter thanChebyshev , which is slightly better than/z. ground, in order to compare RF methods with _the fea_ture cpdin

Interestingly, PCA-Chebyshev is slightly better than me'thod EMK. The lower part shows results using 7 different de

PCA-training-Chebyshev , which shows the bene- scriptors.

fit of a semi-supervised approach to PCA. Interesting-

ly, while being very different techniques to approximate compare among different approximations, hence we did not

the kernel, the performance d&fystr omis comparable  generate multiple image descriptors or a spatial pyramid,

with PCA-Chebyshev . This may hint further improve-  which are compatible with our framework and will improve

ments by combining the two techniques together. However,the results significantly (the running time of feature extra

PCA-Chebyshev still displays a non-trivial performance  tion is the main limiting factor). A calibration is done on

gap with respect to Kernel SVR. This could partially be ac- the output scores to make the 500th highest score on each

counted to the difference between SVR and ridge regres-class the same.

sion, but still shows that the overall prediction model can b In Table4, the performance obtained usihigpear k-

further improved. ernel P] is shown along with the RF results. It can be seen
that among the tested RF metho®CA-Chebyshev is
still superior. Interestingly, different random seedsnsee
The ImageNet ILSVRC 2010 is a challenging classifica- to have a much smaller effect on ImageNet, a fact for
tion dataset where 1 million images needs to be classifiedwhich we currently lack an explanation. In any case, one
into 1,000 different categories. Here we only show pre- could see that RF improves the accuracy by at least 6%
liminary experiments performed using the original BOW over the linear kernel, with very little computational over
feature provided by the authors. Our goal is primarily to head: forVZ andChebyshev , each run would finish in 3

27.57% + 0.44%
26.95% + 0.35%

PCA-Chebyshev
PCA-training-Chebyshe

6.3. Results on mageNet



regressor would only take 0.1-1 seconds, which would make[12]

5000

7000

17.11%+ 0.04%
18.05%=+ 0.08%
16.97 %+ 0.08%

17.63%+ 0.09%
18.85%+ 0.10 %
17.46%=+ 0.09%

Number of Dimensions 3000
Chebyshev 16.30%=+ 0.04%
PCA-Chebyshev | 16.66% 0.08%
VZ 16.05%=* 0.04%
Linear

11.6% (1)

Table 4. Performance on ImageNet ILSVRC 2010 data

hours on a single machine. For the most-time consuming[11] P. Drineas and M. Mahoney. On the nystrom method for ap-
PCA-Chebyshev , each run still finishes in 7 hours. E-
specially, after collecting the Hessian matrix, trainiragle

this approach scale easily to 10,000 or more classes.

7. Conclusion

This paper introduces two techniques to improve the per-[14]
formance of random Fourier features in the context of ap-
proximating large-scale kernel machines. First, based on[15]
analogy to Chebyshev polynomials, an exact analytic series

is proposed to the? kernel. Second, out-of-core PCA on

joint training and testing data is proposed and applied afte
extracting the random Fourier features. Empirical results
show that these steps increase the performance of RF sig-

nificantly for the state-of-the-art exponentiatg#l kernel.

In the meanwhile, the method is still linear in the number
of training examples. Moreover, in combination with B
loss function in the training objective and a ridge regr@ssi

model, the methods are shown to scale extremely well with

large number of classes.
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