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Abstract

The random Fourier features methodology can be used to
approximate the performance of kernel classifiers in linear
time in the number of training examples. However, there
still exists a non-trivial performance gap between the ap-
proximation and the nonlinear kernel classifiers, especial-
ly for the exponentialχ2 kernel, one of the most powerful
models for histograms. Based on analogies with Chebyshev
polynomials, this paper proposes an asymptotically conver-
gent analytic series of theχ2 kernel that is used in the ran-
dom Fourier approximation of the exponentialχ2 kernel.
The new series removes the need to use periodic approxi-
mations to theχ2 function, as typical in previous methods,
and improves the classification accuracy. Besides, out-of-
core principal component analysis (PCA) methods are in-
troduced, which can reduce the dimensionality of the ap-
proximation and achieve better performance, with only an
additional constant factor to the time complexity. Espe-
cially, when PCA is performed jointly on the training and
unlabeled testing data, a further performance improvemen-
t is achieved. The proposed approaches are tested on the
PASCAL VOC 2010 segmentation and the ImageNet ILSVR-
C 2010 datasets, and give statistically significant improve-
ments over previous approximation methods.

1. Introduction

Random Fourier (RF) features [23, 25, 24, 18] is a
promising methodology for large-scale classification. It us-
es Monte Carlo sampling in the frequency domain to con-
struct an embedding such that, linear functions on the em-
bedding are asymptotically convergent approximations to
the nonlinear functions attainable in kernel methods. The
benefit of this transition is that now the time complexity of
many learning methods will be linear in the number of ex-
amplesn, compared to at leastO(n2.3) for the kernel meth-
ods. Therefore, RF makes possible to use complicated non-
linear learning models in the massive datasets that are in-
creasingly common nowadays. RF also enjoys most of the
learning rate and generalization results of kernel methods,

for instance, local Rademacher bounds in [2]. These bene-
fits raise the question whether the slower kernel formulation
can be avoided while preserving its predictive power.

Unfortunately at least in the visual recognition commu-
nity, the current answer is still no. In practice there seems
to be a nontrivial performance difference between RF ap-
proaches and kernel approaches. Although this gap (0.5%
– 4%) is usually not large [18], it is still too significant to
ignore. Multi-stage methods still play a major role for ob-
ject detection [20], where RF and more expensive kernel
methods can be used as two consecutive stages [7].

This paper aims to reduce the approximation gap with-
out losing the advantageousO(n) time complexity. The t-
wo main contributions are: (a) we propose a new conver-
gent analytic series for theχ2 distance commonly used for
histogram features, and (b) we exploit principal component
analysis (PCA) on the obtained random features, in order to
improve performance without additional complexity.

The starting point of our exploration is the two-stage ap-
proximation of the exponential chi-square kernel (exp-χ2)

k(x, y) = exp(−χ2(x, y)) (1)

proposed in [24]. Empirically we found that this has the best
performance in visual recognition, over all the RF kernel
approximations that have been proposed so far. The two-
stage method [24] first uses the Fourier transform on the
non-negative orthant to approximate theχ2 distance as an
inner product. Then another standard RF for the Gaussian
kernel is used to approximate the final exp-χ2.

Previous inner-product approximation for theχ2 dis-
tance [25] relied on a periodic version of the function. The
additional periodicity parameter is rather sensitive. Even if
well-tuned, the approximation quality can deteriorate when
the histograms are out of the periodic range [26]. In this pa-
per derive an analytic recurrence formula to obtain asymp-
totically convergent approximations to theχ2 distance. Ex-
periments show that the new convergent approximations ob-
tain better performance than existing periodic methods.

In addition, in order to obtain more compact embeddings
for large-scale learning when the data cannot fit into mem-
ory, we exploit an out-of-core version of PCA that adds lit-
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tle computational overhead to the RF approximation, espe-
cially when combined with least squares and other methods
based on quadratic loss (e.g. group LASSO). PCA allows us
to reduce the number of dimensions required for classifica-
tion, and relaxes memory constraints when multiple kernels
have to be approximated by RF. We also explore using the
unlabeled test set to better estimate the covariance matrixin
PCA, leading to a better selection of the frequency compo-
nents and improved classification performance.

2. Related Work

Speed-ups to kernel methods based on low-rank approx-
imations of the kernel matrix have been proposed before
[13, 1]. These methods are effective, but applying the ker-
nel machine on new data requires slow kernel computations
between the test and training examples. An alternative is to
use the Nyström methods [28] that sub-samples the training
set and operate on a reduced kernel matrix. Although this
works well in practice, the asymptotic convergence rate of
this approximation is slow:O(n− 1

4 ) [11], wheren is the
number of examples used for the approximation.

A topic of recent interest is coding image features. The
goal of such methods is to achieve good performance with
linear classification or regression after coding the features
[27, 15]. Hierarchical coding schemes with deeper struc-
tures have also been proposed [16]. Both sparse and dense
coding schemes have proved successful. In fact, the super-
vector coding [19] and the Fisher kernels [21] have been the
best performers in the ImageNet large-scale image classifi-
cation challenge [10]. Comparing between coding methods
and RF, we note that RF usually starts with bag-of-word
vector quantization while coding schemes sometimes start
with raw image features and therefore have an extra layer
of processing freedom. Nevertheless, replacing hard clus-
tering with a soft-assignment clustering may improve the
performance of the histogram method to become on par
with some coding schemes [8]. Alternatively, one can use
a Gaussian matching kernel approximated with RF, instead
of comparing bins independently [3].

The dictionaries of the aforementioned coding schemes
are usually extremely large (e.g., both the Fisher kernel and
supervector coding usually require more than 200k dimen-
sions [8]) and the generation of the dictionary is often ex-
tremely time-consuming. RF is theoretically guaranteed to
approximate the kernel model with a reasonable asymptotic
convergence rate [23]. It would neither require too many
dimensions nor training for the dictionaries. Therefore itis
well worth exploring as an alternative approach.

3. The Chebyshev Approximation

Throughout this paper we useX to denote the training
set withn training examples andd dimensions.D denotes

the number of random features after the RF embedding. The
all-ones vector is described by1, the all-zeros by0, and the
imaginary unit byj. ∗ is used for complex conjugate. All
kernels are positive semi-definite kernels.

In [25], the class ofγ-homogeneouskernels is intro-
duced:

k(cx, cy) = cγk(x, y),∀c ≥ 0. (2)

Choosingc = 1√
xy

, aγ-homogeneouskernel can be written
as:

k(x, y) = c−γk(cx, cy) = (xy)
γ
2 k(

√

y

x
,

√

x

y
)

= (xy)
γ
2 K(log y − log x) (3)

whereK is an even function, i.e.,K(−x) = K(x).
Denoting∆ = log y − log x, the1− χ2 kernel is

k0(x, y) = 1−
∑

i

(xi − yi)
2

xi + yi
=

∑

i

2xiyi
xi + yi

(4)

(assuming
∑

i xi = 1). In each dimension we have

k0(x, y) =
2xy

x+ y
=

√
xy

2
√

x
y
+

√

y

x

=
√
xysech(

∆

2
), (5)

wheresech(x) = 2
ex+e−x is the hyperbolic secant function

whose Fourier transform isπsech(πω). Using the inverse
Fourier transform to mapπsech(πω) back tok0(x, y)

k0(x, y) =
√
xy

∫ ∞

−∞

ejω(log x−log y)sech(πω)dω

=

∫ ∞

−∞

Φω(x)
∗Φω(y)dω (6)

whereΦω(x) =
√
xe−jω log x

√

sech(πω).
In [25], the functione−jω log xsech(πω) is approximat-

ed with a periodic function, which is then approximated
with finite Fourier coefficients (hereafter called theVZ ap-
proximation as a shorthand for Vedaldi-Zisserman). How-
ever,e−jω log xsech(πω) is inherently aperiodic. As a con-
sequence the approximation error is low when| log x| is s-
mall, but excessively high when| log x| is larger than the
period. Convergence is attained in [25] because the intro-
duced aperiodic bias is cancelled with the factor

√
xy when

x or y is small. However, uneven biases in different regions
may impact performance in learning. Here we pursue an al-
ternative derivation that is analytic and asymptotically con-
vergent, even without the factor

√
xy. We describe the main

ideas below and provide more details in the supplementary
material.

Because the kernel is symmetric the imaginary part of
the inverse Fourier transform is0, leading to

k0(x, y) =
√
xy

∫ ∞

−∞

cos(ω(log x− log y))sech(πω)dω

=
√
xy

∫ ∞

−∞

(cos(ω log x) cos(ω log y) (7)

+sin(ω log x) sin(ω log y))
2

eπω + e−πω
dω.



Using a change of variablez = 2 arctan eπω, the integral
becomes

k0(x, y) = (8)
√
xy

π

∫ π

0

(cos(
1

π
log | tan z

2
| log x) cos( 1

π
log | tan z

2
| log y)

+ sin(
1

π
log | tan z

2
| log x) sin( 1

π
log | tan z

2
| log y))dz.

Since the functions cos( 1
π
log | tan z

2 | log x) and
sin( 1

π
log | tan z

2 | log x) are periodic and even, they
can be represented using discrete-term Fourier cosine series

fx(z) =
a0(x)

2
+

N
∑

n=1

an(x) cos(nz). (9)

Since for all integersn andm,

∫ π

0

cos(nx) cos(mx)dx =

{

0 n 6= m

π/2 n = m
,

we have

1

π

∫ π

0

fx(z)fy(z)dz =
a0(x)a0(y)

4
+

1

2

∑

i

ai(x)ai(y) (10)

which offers a natural orthogonal decomposition. A vector
ax = 1√

2
[a0(x)/

√
2, a1(x), a2(x), . . . , an(x)] guarantees

thataTx ay = 1
π

∫ π

0
fx(z)fy(z)dz.

Obtaining the coefficients require comput-
ing the integrals

∫ π

0
cos( 1

π
log(tan z

2 ) log x) and
∫ π

0 sin( 1
π
log(tan z

2 ) log x). Since these functions are
symmetric/antisymmetric, half of the coefficients in either
cosine series are zero. Therefore, we can combine the
two series into a new one,cn(x), which contains the even
Fourier coefficients from the cosine term and the odd
coefficients from the sine term.

In fact, using integration-by-parts we can represent the
coefficients from one series (either the cosine term or the
sine term) by coefficients of the other series. After some al-
gebraic derivations (see supplementary material) we obtain
the following analytic form ofcn(x):

ck(x) =







1
k
((−1)k 2 log x

π
ck−1(x) + (k − 2)ck−2(x)), k > 1

−
√

2 log x

π
c0(x), k = 1

2x
x+1

, k = 0
(11)

with k0(x, y) =
∑

k ck(x)ck(y).
Applying the calculation for all dimensions yields the

new Fourier embedding for theχ2 kernel. Then, we fol-
low [24] and use RF to approximate a Gaussian kernel
on c(x), to obtain the approximation of the exp-χ2 kernel
k(x, y) = exp(−γχ2(x, y)). The complete procedure is p-
resented in Algorithm1. We name the above algorithm as
the Chebyshev approximation because it draws ideas from
Chebyshev polynomials and the Clenshaw-Curtis quadra-
ture [4]. A central idea in the Clenshaw-Curtis quadrature is

Algorithm 1 Approximation of the exp-χ2 kernel based on
the Chebyshev approximation of theχ2 distance.

input : n × d data matrixX = [XT
1 , X

T
2 , . . . , X

T
n ]

T . Pa-
rametersm,D.

output : The random Fourier featureZ of the exp-χ2 ker-
nel.

1: Compute fork = 0, . . . ,m− 1

ck(xij) =



















1
k
((−1)k

2 log xij

π
ck−1(xij)

+(k − 2)ck−2(xij)), k > 1

−
√
2 log xij

π
c0(xij), k = 1

2xij

xij+1 , k = 0

for each dimensionj of each examplexi. Denotec(Xi)
the md × 1 vector constructed by concatenating al-
l ck(xij), j = 1, . . . , d.

2: Construct amd×D matrixΩ, where each entry is sam-
pled from a normal distributionN (0, 2γ).

3: Construct aD× 1 vectorb which is sampled randomly
from [0, 2π]D.

4: Zi = cos(c(Xi)Ω + b) is the RF feature forXi [23].

to use the change of variableθ = arccos(x) in order to con-
vert an aperiodic integral into a periodic one, enabling the
application of Fourier techniques. Our variable substitution
z = arctan ex serves a similar purpose. The same tech-
nique can be applied in principle to other kernels, such as
the histogram intersection and the Jensen-Shannon kernel.
However, the analytical approximation due to integration-
by-parts may not extend easily. We plan to pursue these
extensions in the future.

4. Convergence Rate of the Chebyshev Ap-
proximation

In this section we present an analysis on the asymptotic
convergence rate of the Chebyshev approximation. Since
(11) is exact, we can apply standard results on Fourier series
coefficients [4], which says the convergence rate depends on
the smoothness of the function that is approximated.

Lemma 1. |k0(xi, yi) −
∑m

k=1 ck(xi)ck(yi)| ≤ C
m

√
xiyi

whereC is a constant.

Proof. Since cm(xi)√
xi

represents Fourier series for

cos( 1
π
log | tan z

2 | log xi) and sin( 1
π
log | tan z

2 | log xi),
which are both absolutely continuous but not continuously
differentiable (it oscillates atz = 0), we have:

0 < mcm(xi) ≤
√
C
√
xi (12)

and consequentially

|k0(xi, yi)− c(xi)
T c(yi)| ≤

∑

k>m

C

m2

√
xiyi ≤ C

m

√
xiyi



Using Lemma1 it is straightforward to prove that

Theorem 1. |k0(x, y) − ∑

i

∑m

k=1 ck(xi)ck(yi)| ≤ C
m

when
∑

i xi =
∑

i yi = 1.

Proof. Use Cauchy-Schwarz inequality,
|k0(x, y)−

∑

i

∑m

k=1 ck(xi)ck(yi)| ≤ C
m

∑

i

√
xiyi

≤ C
m

√
∑

i xi

∑

i yi =
C
m

.

Although our method converges slower than theVZ ap-
proximation, our convergence is independent on the factors√
xiyi. Whenxi or yi is small, theVZ approximation can

only guaranteek0(xi,yi)√
xy

≤ C1 whereC1 is a constant close

to 1, but our approximation can guaranteek0(xi,yi)√
xy

≤ C
m

.
In this case we perform much better thanVZ. Since the im-
age histograms considered in this work often consist many
small values instead of a few large ones, our alternative ap-
proximation is expected to work slightly better in general.

We can numerically simulate the constantC for differen-
t x values by computing the empirical boundmaxm

mcm√
x

.
The simulation results with100, 000 ≤ m ≤ 500, 000 are
presented in Figure1. It can be seen that the approximation
is more accurate if the input values are larger, however, the
error on the smaller input values can be offset by the

√
x

factor, making the effective constant small in all cases.
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Figure 1. A plot of theC in Theorem 1 for different input values.
TheL1 error of the kernel approximation is decided byC (Theo-
rem 1). The valueC is large when the histogram value is small,
which can be offset by the

√
x factor multiplied to it.

5. Principal Component Analysis of Random
Features on Multiple Descriptors

Another rather orthogonal strategy we pursue is principal
component analysis after obtaining random features. This is
useful for reducing the memory footprint when multiple im-
age descriptors are used (common in computer vision, e.g.
[14]) and RF embeddings are computed for each of them. It
is known that the performance of RF improves when more
random dimensions are used. However, when the RF of
multiple kernels are concatenated: e.g. with 7 kernels and
7,000 RF dimensions for each kernel, the learning phase fol-
lowing RF needs to operate on a 49,000 dimensional feature

vector. In most cases, the speed of learning algorithms de-
teriorates quickly when the data cannot be load in memory.
PCA is a natural choice to use fewer dimensions for an ap-
proximation of the same quality. In fact, it is one of the very
few possible choices in high dimensions, since many other
techniques like quasi-Monte Carlo suffer from the curse of
dimensionality – the convergence rate decreases exponen-
tially with the number of dimensions [5], which makes them
unsuitable for RF where many dimensions are needed.

Another interesting aspect of RF-PCA is it can bring an
unexpected flavor of semi-supervised learning, in that one
can use unlabeled test data to improve classification accura-
cy. RF-PCA amounts to selecting the relevant dimensions
in the frequency space. By considering both the training and
testing data during PCA, frequencies that help discriminate
test data will more likely be selected. In the experiments
such a strategy will be shown to improve performance over
the computation of PCA only on training data.

Algorithm 2 Out-of-Core Principal Component Analysis.

input : n× d data matrixX = [XT
1 , X

T
2 , . . . , X

T
n ]

T . Out-
put vectory. Number of dimensionD to retain after
PCA.

1: Divide the data intok chunks, calledX(1), X(2), . . . ,
X(k).

2: H = 0,m = 0, v = 0

3: for i = 1 → k do
4: Load thei-th chunkX(i) into memory.
5: Use Algorithm1 to compute the RF featureZ(i) for

X(i).
6: H = H + ZT

(i)Z(i), m = m+ ZT
(i)1, v = v + ZT

(i)y
7: end for
8: H = H − 1

n
mmT .

9: Compute eigen-decompositionH = UDUT . Output
the firstD columns ofU asŪ , the diagonal matrixD,
and the input-output productv.

The main problem is in large-scale datasets, the data can-
not be fully loaded into memory. Therefore PCA needs
to be performed out-of-core, a high-performance comput-
ing term depicting this situation (unable to load data into
memory). As have been discussed extensively in the high-
performance computing literature (e.g., [22]), the way to
perform out-of-core PCA in linear time is not by singular
value decomposition on the RF featuresZ, but rather by
performing eigenvalue decomposition for the centered co-
variance matrixZT (I − 1

n
11

T )Z, which can be computed
out-of-core by just loading a chunk ofXi into memory at a
time, compute their RF featureZ, compute the covariance
matrix and then delete the RF features from memory. Then
an eigen-decomposition gives the transformation matrixU
for PCA. We denotēU as the matrix obtained by selecting
the firstD dimensions ofU corresponding to the largest
eigenvalues (Algorithm2). Denote the mean vector of the



input matrixZ̄ = 1
n
ZT

1, then

Z̃ = (Z − 1Z̄T )Ū = (I − 1

n
11

T )ZŪ (13)

is the feature vector obtained after PCA projection.
It is very convenient to perform regression with a

quadratic loss after PCA, since only the Hessian is needed
for optimization. This applies not only to traditional least
squares regression, but also to the LASSO, group LASSO,
and other composite regularization approaches. In this case
the projections need not be performed explicitly. Instead,
notice that onlyZ̃T Z̃ andZ̃T y are needed for regression:

Z̃T Z̃ = ŪTZT (I − 1

n
11

T )ZŪ

Z̃T y = ŪTZT (I − 1

n
11

T )y (14)

It follows that onlyZTZ, ZT
1 andZT y have to be com-

puted. All terms can be computed out-of-core simultane-
ously. Algorithm3 depicts this scenario. Under this PCA
approach the data is loaded only once to compute the Hes-
sian. Additional complexity ofO(D3) is necessary for ma-
trix decomposition onH . If ridge regression is used, the
H ′ after decomposition is diagonal therefore onlyO(D) is
needed to obtain the regression results. The bottleneck of
this algorithm for large-scale problems is undoubtedly the
computation of the initial Hessian, which involves reading
multiple chunks from disk.

Algorithm 3 Learning after PCA with Quadratic Loss.

input : n× d data matrixX = [XT
1 , X

T
2 , . . . , X

T
n ]

T . Out-
put vectory. Number of dimensionD to retain after
PCA.

1: Perform out-of-core PCA using Algorithm2.
2: H ′ = ŪTHŪ = D̄, the firstD rows and columns of

the diagonal matrixD.
3: v′ = ŪT v − 1

n
(1T y)ŪTm.

4: Perform learning on̄D, v′, e.g., for linear ridge regres-
sion where the optimization isargminw ‖wT Z̃−y‖2+
λ‖w‖2, the solution isw = (D̄+ λI)−1v′.

5: UseŪTw instead ofw as a function of the original in-
puts:f(x) = wT Ūx− 1

n
wT Ūm, in order to avoid the

projection for the testing examples.

The more sophisticated case is when PCA needs to be
performed separately on multiple different kernel approxi-
mators, i.e.,Z = [Z(1)Z(2) . . . Z(l)], where eachZ(i) is the
RF feature embedding of each kernel. This time, the need to
computeZ(i)TZ(j) rules out tricks for simple computation.
The data needs to be read in twice (Algorithm4), first to
perform the PCA, and then useU to transformX in chunks
in order to obtainZ andZTZ. But the full computation is
still linear in the number of training examples.

In both cases, the projection is not required for the test-
ing examples. Because wheneverw is obtained,wT Z̃ =

wT Ū(Z − 1
n
Z̄1T ), thenŪw can be the weight vector for

the original input, with the addition of a constant term.

Algorithm 4 Two-stage Principal Component Analysis
when learning with multiple kernels.

input : n× d data matrixX = [XT
1 , X

T
2 , . . . , X

T
n ]

T . Out-
put vectory. Number of dimensionD to retain after
PCA.

1: Perform out-of-core PCA using Algorithm2.
2: for i = 1 → k do
3: Load thei-th chunkX(i) into memory.
4: Use Algorithm 1 to compute the RF featureZ(i) for

X(i), with the same randomization vectorsw as be-
fore.

5: Z̃ = (Z(i) − 1
n
1mT )Ū .

6: H ′ = H ′ + Z̃T Z̃, v′ = v′ + Z̃Ty
7: end for
8: Perform learning onH ′, v′. E.g., for linear least squares

where the optimization isargminw ‖wTZ − y‖2, the
solution isw = H ′−1v′.

9: UseŪTw instead ofw as a function of the original in-
puts:f(x) = wT Ūx − 1

n
wT Ūm, in order to avoid the

projection step for the testing examples.

We note that out-of-core least squares or ridge regression
scales extremely well with the number of output dimensions
c, which can be used to solve one-against-all classification
problems withc classes. In Algorithm2 or 4, ZT y will
be computed inO(nDc) time along with the Hessian. After
the inverse of Hessian is obtained, only a matrix-vector mul-
tiplication costingO(D2c) is needed to obtain all the solu-
tions, without any dependency onn. Thus the total time
of this approach withc classes isO(nDc + D2c) which
scales very nicely withc. Especially compared with oth-
er algorithms that need to perform the full training proce-
dure on each class. Although theL2 loss is not optimal for
classification, in large-scale problems (e.g. ImageNet) with
1, 000−10, 000classes, the out-of-core ridge regression can
still be used to generate a fairly good baseline result quickly.

6. Experiments

Our experiments are conducted on two extremely
challenging datasets, the PASCAL VOC 2010 [12] and
the ImageNet [10] ILSVRC 2010 (http://www.image-
net.org/challenges/LSVRC/2010/) . These benchmarks re-
veal the different performance among approximation meth-
ods, which would otherwise be difficult to observe in sim-
ple datasets. We conduct most experiments on the medium-
scale PASCAL VOC data in order to compare against kernel
methods. For this dataset, we use exclusively thetrain
andval datasets, which have 964 images and around 2100
objects each. Classification results are also shown on the
ImageNet dataset to demonstrate the efficiency of the ker-



nel approximation. The experiments are conducted using an
Intel Xeon E5520 2.27GHz with 8 cores and 24GB mem-
ory. The algorithm1 is parallelized using OpenMP to take
advantage of all cores.

6.1. Results on the Chebyshev Approximation

To test the Chebyshev approximation, we take a small-
scale problem from the PASCAL VOC dataset. For train-
ing, we use segments that best match each ground truth seg-
ment in terms of overlap (called best-matching segments) in
the train set, plus the ground truth segments. The best-
matching segments in theval set are used as test. This
creates a problem with 5100 training and 964 test segments.

The methods tested are Chebyshev ,
PCA-Chebyshev and VZ. The kernel approximation
accuracies for each method are shown in the supplementary
materials. For reference, we also report classification
results on theχ2 kernel without exponentiating asChi2 ,
as well as the skewedχ2 kernel proposed in [18] as
Chi2-Skewed . Because of the randomness in the Monte
Carlo approximation, different random seeds lead to
quite significant performance variations. Therefore the
experiments are all averaged over 20 trials of random seeds.
Within each trial, the same random seeds are used for all
methods. ForPCA-Chebyshev , the initial sampling is
done using three times the final approximating dimensions,
and PCA is performed to reduce the dimensionality to the
same level as the other two methods. We test the classifica-
tion performance of these kernels with two different types
of features: a bag of SIFT words (BOW) feature of 300
dimensions, and a histogram of gradient (HOG) feature of
1700 dimensions. The classification is done via a linear
SVM using the LIBSVM library (empirically we find the
LIBLINEAR library produces worse results in this case
for dense features). TheC parameter in LIBSVM is set to
50, the kernel to be approximated is a exp-χ2 kernel with
β = 1.5. ForVZ, the period parameter is set to the optimal
one specified in [25]. For each kernel,10 dimensions are
used to approximate theχ2 distance in each dimension.
More dimensions have been tested but they did not improve
the performance; therefore those results are not included.

The results are shown in Tables1 and 2. It can be
seen that theChebyshev approximation almost always
gives a slight performance edge over theVZ approxima-
tion. And PCA-Chebyshev is always significantly bet-
ter than the other two. This should not be surprising since
PCA-Chebyshev takes advantage of three times the di-
mensions than the other methods (before the dimensional-
ity reduction). With7000 approximating dimensions and
good random seeds, thePCA-Chebyshev method is able
to match the performance of the kernel methods, a non-
trivial achievement for the exp-χ2 kernel.

6.2. Results with Multiple Kernels on the PASCAL
VOC Segmentation Challenge

In this section the image segmentation task from PAS-
CAL VOC is considered, where we need to both recognize
objects in images, and generate pixel-wise segmentations
for these objects. Ground truth segments of objects paired
with their category labels are available for training.

A recent state-of-the-art approach trains a scoring func-
tion for each class on many putative figure-ground segmen-
tation hypotheses, obtained using the constrained paramet-
ric min-cut method [6]. This creates a large-scale learning
task even if the original image database has moderate size:
with 100 segments in each image, training on964 images
creates a learning problem with around100, 000 training
examples. This training set size is still tractable for kernel
approaches, thus we can directly compare against them.

Two experiments are conducted using multiple kernel
approximations of exp-χ2 kernels. The first one consid-
ers only SIFT on the foreground and background, in or-
der to compare against a sparse coding method EMK [3]
which works only on SIFT. The second one is on 7 differ-
ent image descriptors, which include 3 HOGs at different
scales, BOW on SIFT for the foreground and background,
and BOW on color SIFT for the foreground and background
[7]. The VOC segmentation measure is used to compare
the approaches. This measure is the average of pixel-wise
average precision on the 20 classes plus background. To
avoid complications and for a fair comparison, the post-
processing step [7] is not performed and the result is ob-
tained by only outputing one segment with the highest s-
core in each image. The method used for nonlinear estima-
tion is one-against-all support vector regression (SVR) as
in [17], and the method for linear estimation is one-against-
all ridge regression. The latter is used since fast solutions
for linear SVR problems are not yet available for out-of-
core dense features. We want to avoid stochastic gradient
methods (e.g., [19]) since these are difficult to tune to ful-
l convergence, which can potentially bias the results. We
average over 5 trials of different random seeds.

For the first experiment, we use 1,000 dimensions for
each descriptor. EMK is performed with a 1000-words
BOW without a spatial pyramid, and RF is performed by
expanding a 300-words BOW to 1,000 RF dimensions. The
result is shown in the upper part of Table3, where one
can see thatEMKis vastly inferior to the RF approach in
Chebyshev-BOW-only . It seems without the spatial
pyramid, this feature encoding approach is not performing
as well as approximations to the exp-χ2 kernel.

For the second experiment, the result ofChebyshev ,
VZ and PCA-Chebyshev is shown. Here
PCA-Chebyshev takes the principal components on
both the training and the test set. Additionally we
show results taking PCA on the training set only, under



Number of Dimensions 3000 5000 7000
Chi2 29.15% 30.50% 31.22%

Chi2-Skewed 30.08%± 0.74% 30.37 %± 0.63% 30.51 %± 0.35 %
Chebyshev 31.26%± 0.62% 32.75%± 0.71% 33.03%± 0.87%

PCA-Chebyshev 32.74%± 0.62% 33.35%± 0.68% 33.49%± 0.45%
VZ 31.37%± 0.77% 32.19 %± 0.83% 32.66%± 0.78%

Exact exp-χ2 34.34%
Table 1. Classification accuracy of exp-χ2 kernel when theχ2 function is approximated with different approximations, on a HOG descriptor.
Results for theChi2 andChi2-Skewed kernels are also shown for a reference.

Number of Dimensions 3000 5000 7000
Chi2 41.91% 42.32% 42.12%

Chi2-Skewed 39.82%± 0.73% 40.79%± 0.55% 40.90%± 0.82%
Chebyshev 41.48%± 0.95% 42.52%± 0.88% 42.65%± 0.47%

PCA-Chebyshev 42.80%± 0.74% 43.25%± 0.55% 43.42%± 0.42 %
VZ 41.08%± 1.22% 42.06 %± 0.92% 42.46%± 0.72 %

Exact exp-χ2 44.19%
Table 2. Classification accuracy of exp-χ2 kernel when theχ2 function is approximated with different approximations, on a BOW-SIFT
descriptor. Results for theChi2 andChi2-Skewed kernels are also shown for a reference.

PCA-training-Chebyshev . For Chebyshev and
VZ, we take 4,000 RF dimensions for each kernel, which
totals 28,000 dimensions (the largest number that can fit
in our computer memory). For PCA, we retain a total of
19,200 dimensions, particularly since additional dimen-
sions do not seem to improve the performance. In addition,
we compare to theNystr ömmethod [28] by taking 28,000
random training examples and evaluating the combined
kernel of each example against them for the feature vector.

The results in this experiment are computed using
the pixel average precision measure of VOC, and are
shown in the latter part of Table3. The trend resem-
bles the last experiment, asPCA-Chebyshev is bet-
ter thanChebyshev , which is slightly better thanVZ.
Interestingly, PCA-Chebyshev is slightly better than
PCA-training-Chebyshev , which shows the bene-
fit of a semi-supervised approach to PCA. Interesting-
ly, while being very different techniques to approximate
the kernel, the performance ofNystr öm is comparable
with PCA-Chebyshev . This may hint further improve-
ments by combining the two techniques together. However,
PCA-Chebyshev still displays a non-trivial performance
gap with respect to Kernel SVR. This could partially be ac-
counted to the difference between SVR and ridge regres-
sion, but still shows that the overall prediction model can be
further improved.

6.3. Results on ImageNet

The ImageNet ILSVRC 2010 is a challenging classifica-
tion dataset where 1 million images needs to be classified
into 1,000 different categories. Here we only show pre-
liminary experiments performed using the original BOW
feature provided by the authors. Our goal is primarily to

Method Performance
EMK 8.52%

Chebyshev-BOW-only 14.95%± 0.67%

Chebyshev 26.25%± 0.41%
VZ 25.57%± 0.57%

PCA-Chebyshev 27.57%± 0.44%
PCA-training-Chebyshev 26.95%± 0.35%

Nyström 27.55%± 0.49%
Kernel SVR 30.47%

Table 3. VOC Segmentation Performance on theval set, mea-
sured by pixel AP with one segment output per image (no post-
processing). averaged over 5 random trials. The upper part shows
results on only BOW-SIFT features for the foreground and back-
ground, in order to compare RF methods with the feature coding
method EMK. The lower part shows results using 7 different de-
scriptors.

compare among different approximations, hence we did not
generate multiple image descriptors or a spatial pyramid,
which are compatible with our framework and will improve
the results significantly (the running time of feature extrac-
tion is the main limiting factor). A calibration is done on
the output scores to make the 500th highest score on each
class the same.

In Table4, the performance obtained usingLinear k-
ernel [9] is shown along with the RF results. It can be seen
that among the tested RF methods,PCA-Chebyshev is
still superior. Interestingly, different random seeds seem
to have a much smaller effect on ImageNet, a fact for
which we currently lack an explanation. In any case, one
could see that RF improves the accuracy by at least 6%
over the linear kernel, with very little computational over-
head: forVZ andChebyshev , each run would finish in 3



Number of Dimensions 3000 5000 7000
Chebyshev 16.30%± 0.04% 17.11%± 0.04% 17.63%± 0.09%

PCA-Chebyshev 16.66%± 0.08% 18.05%± 0.08% 18.85%± 0.10 %
VZ 16.05%± 0.04% 16.97 %± 0.08% 17.46%± 0.09%

Linear 11.6% ([9])
Table 4. Performance on ImageNet ILSVRC 2010 data

hours on a single machine. For the most-time consuming
PCA-Chebyshev , each run still finishes in 7 hours. E-
specially, after collecting the Hessian matrix, training each
regressor would only take 0.1-1 seconds, which would make
this approach scale easily to 10,000 or more classes.

7. Conclusion

This paper introduces two techniques to improve the per-
formance of random Fourier features in the context of ap-
proximating large-scale kernel machines. First, based on
analogy to Chebyshev polynomials, an exact analytic series
is proposed to theχ2 kernel. Second, out-of-core PCA on
joint training and testing data is proposed and applied after
extracting the random Fourier features. Empirical results
show that these steps increase the performance of RF sig-
nificantly for the state-of-the-art exponentiatedχ2 kernel.
In the meanwhile, the method is still linear in the number
of training examples. Moreover, in combination with anL2

loss function in the training objective and a ridge regression
model, the methods are shown to scale extremely well with
large number of classes.
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