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Summary. Recommendation systems are emerging as an important business application with
significant economic impact. Currently popular systems include Amazon’s book recommenda-
tions, Netflix’s movie recommendations and Pandora’s music recommendations. We address
the problem of estimating probabilities associated with recommendation system data by using
non-parametric kernel smoothing. In our estimation we interpret missing items as randomly cen-
sored observations of preference relations and obtain efficient computation schemes by using
combinatorial properties of generating functions. We demonstrate our approach with several
case-studies involving real world movie recommendation data.The results are comparable with
state of the art techniques while also providing probabilistic preference estimates outside the
scope of traditional recommender systems.
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1. Introduction

Recommendation systems are emerging as an important business application with significant
economic impact. The data in such systems are collections of incomplete tied preferences across
n items that are associated with m different users. Given an incomplete tied preference associated
with an additional .m+1/th user, the system recommends unobserved items to that user on the
basis of the preference relations of the m + 1 users. Currently deployed recommendation sys-
tems include book recommendations at amazon.com, movie recommendations at netflix.com
and music recommendations at pandora.com. Constructing accurate recommendation systems
(that recommend to users items that are truly preferred over other items) is important for assist-
ing users as well as increasing business profitability. It is an important topic of on-going research
in machine learning and data mining.

In most cases of practical interest the number of items n that are indexed by the system (items
may be books, movies, songs, etc.) is relatively high in the 103–104 range. Perhaps because of
the size of n, almost always each user observes only a small subset of the items, typically in the
range 10–100. As a result the preference relations that are expressed by the users are over a small
subset of the n items.

Formally, we have m users providing incomplete tied preference relations on n items
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S1 : A1,1 ≺A1,2 ≺ . . . ≺A1,k.1/,

S2 : A2,1 ≺A2,2 ≺ . . . ≺A2,k.2/,

:::

Sm : Am,1 ≺Am,2 ≺ . . . ≺Am,k.m/

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.1/

where Ai,j ⊂{1, . . . , n} are sets of items (without loss of generality we identify items with inte-
gers 1, . . . , n) defined by the following interpretation: user i prefers all items in Ai,j to all items
in Ai,j+1. The notation k.i/ above is the number of such sets provided by user i. The data (1) are
incomplete since not all items are necessarily observed by each user, i.e. ∪k.i/

j=1Ai,j �{1, . . . , n},
and may contain ties since some items are left uncompared, i.e. |Ai,j| > 1. Recommendation
systems recommend items to a new user, denoted as m+1, on the basis of their preference

Sm+1 : Am+1,1 ≺Am+1,2 ≺ . . . ≺Am+1,k.m+1/ .2/

and its relationship to the preferences of the m users (1).
As an illustrative example, assuming that n=9 and m=3, the data

S1 : 1, 8, 9≺4≺2, 3, 7,

S2 : 4≺2, 3≺8,

S3 : 4, 8≺2, 6, 9

correspond to A1,1 = {1, 8, 9}, A1,2 = {4}, A1,3 = {2, 3, 7}, A2,1 = {4}, A2,2 = {2, 3}, A2,3 = {8},
A3,1 ={4, 8} and A3,2 ={2, 6, 9}, and k.1/=k.2/=3 and k.3/=2. From the data we may guess
that item 4 is relatively popular across the board whereas some users like item 8 (users 1 and 3)
and some hate it (user 2). Given a new .m+1/th user issuing the preference 1≺2, 3, 7 we might
observe a similar pattern of preference or taste to that of user 1 and recommend to the user item
8. We may also recommend item 4 which has broad appeal resulting in the augmentation

1≺2, 3, 7 �→1, 4, 8≺2, 3, 7:

We note that in some cases the preference relations (1) arise from users providing numeric
scores to items. For example, if the users assign 1–5 stars to movies, the set Ai,j contains all mov-
ies that user i assigned 6− j stars to and k.i/=5 (assuming that some movies were assigned to
each of the 1-, 2-, 3-, 4- and 5-star levels). As pointed out by a wide variety of studies in econom-
ics and social sciences, e.g. Cliff and Keats (2003), such numeric scores are inconsistent among
different users. We therefore proceed to interpret such data as ordinal rather than numeric.

A substantial body of literature in computer science has addressed the problem of construct-
ing recommendation systems as this has been an active research area since the 1990s. We have
attempted to outline the most important and successful approaches. The earliest efforts made a
prediction for the rating of items based on the similarity of the test user and the training users
(Resnick et al., 1994; Breese et al., 1998; Herlocker et al., 1999). Specifically, these attempts
used similarity measures such as Pearson correlation (Resnick et al., 1994) and vector cosine
similarity (Breese et al., 1998; Herlocker et al., 1999) to evaluate the similarity level between
different users.

More recent work includes user and movie clustering (Breese et al., 1998; Ungar and Foster,
1998; Xue et al., 2005), item–item similarities (Sarwar et al., 2001), Bayesian networks (Breese
et al., 1998), dependence network (Heckerman et al., 2000) and probabilistic latent variable
models (Pennock et al., 2000; Hofmann, 2004; Marlin, 2004).
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Most recently, the state of the art methods including the winner of the Netflix competition
are based on non-negative matrix factorization of the partially observed user rating matrix. The
factorized matrix can be used to fill out the unobserved entries in a way that is similar to latent
factor analysis (Goldberg et al., 2001; Rennie and Srebro, 2005; Lawrence and Urtasun, 2009;
Koren, 2010).

Each of the above methods focuses exclusively on user ratings. In some cases item information
is available (movie genre, actors, directors, etc.) which have led to several approaches that com-
bine voting information with item information (Basu et al., 1998; Popescul et al., 2001; Schein
et al., 2002).

Our method differs from the methods above in that it constructs a full probabilistic model
on preferences, it can handle heterogeneous preference information (not all users must specify
the same number of preference classes) and does not make any parametric assumptions. In
contrast with previous approaches it enables clear meaningful statistical estimation procedures
for not only the prediction of item ratings, but also the discovery of association rules and the
estimation of probabilities of interesting events. Note that non-negative matrix factorization
may be considered a probabilistic model assuming exponential family models such as Poisson
or normal. Such an approach, however, models the scores as numeric variables rather than the
ordering themselves as is the approach of this paper.

In this paper we describe a non-parametric statistical technique for estimating probabilities
on preferences based on the data (1). This work extends non-parametric density estimation over
rankings (Lebanon and Mao, 2008) to include ranking data of arbitrary incompleteness and tie
structure making it amenable to a wide range of real world applications. This technique may
be used in recommendation systems in different ways. Its principal usage may be to provide
a statistically meaningful estimation framework for issuing recommendations (in conjunction
with decision theory). However, it also leads to other important applications including mining
association rules, exploratory data analysis and clustering items and users. Two key observations
that we make are

(a) incomplete tied preference data may be interpreted as randomly censored permutation
data and

(b) using generating functions we can provide a computationally efficient scheme for com-
puting the estimator in the case of triangular smoothing.

We proceed in the next sections to describe notation and our assumptions and estimation
procedure, and we follow with case-studies demonstrating our approach on real world recom-
mendation systems data.

2. Definitions and estimation framework

We describe the following notation and conventions for permutations, which are taken from
Diaconis (1988) where more detail may be found. We denote a permutation by listing the items
from most preferred to least separated by a ‘≺’ or ‘|’ symbol: π−1.1/≺π−1.2/≺ . . . ≺π−1.n/,
e.g. π.1/ = 2, π.2/ = 3 and π.3/ = 1 is 3 ≺ 1 ≺ 2. Rankings with ties occur when judges do not
provide enough information to construct a total order. In particular, we define tied rankings as
a partition of {1, . . . , n} to k<n disjoint subsets A1, . . . , Ak ⊂{1, . . . , n} such that all items in Ai

are preferred to all items in Ai+1 but no information is provided concerning the relative prefer-
ence of the items among the sets Ai. We denote such rankings by separating the items in Ai and
Ai+1 with a ‘≺’ or ‘|’ notation. For example, the tied ranking A1 ={3}, A2 ={2} and A3 ={1, 4}
(items 1 and 4 are tied for last place) is denoted as 3≺2≺1, 4 or 3|2|1, 4.
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Rankings with missing items occur when judges omit certain items from their preference
information altogether. For example assuming a set of items {1, . . . , 4}, a judge may report a
preference 3≺2 ≺4, omitting altogether item 1 which the judge did not observe or experience.
This case is very common in situations involving a large number of items n. In this case judges
typically provide a preference only for the l � n items that they observed or experienced. For
example, in movie recommendation systems we may have n∼103 and l∼101.

Rankings can be full (permutations), with ties, with missing items or with both ties and miss-
ing items. In either case we denote the rankings by using the ‘≺’ or ‘|’ notation or using the
disjoint sets A1, . . . , Ak notation. We also represent tied and incomplete rankings by the set of
permutations that are consistent with it. For example,

3≺2≺1, 4={3≺2≺1≺4}∪{3≺2≺4≺1},

3≺2≺4={1≺3≺2≺4}∪{3≺1≺2≺4}∪{3≺2≺1≺4}∪{3≺2≺4≺1}
are sets of two and four permutations corresponding to tied and incomplete rankings respec-
tively.

It is difficult to posit directly a coherent probabilistic model on incomplete tied data such
as data (1). Different preferences relations are not unrelated to each other: they may subsume
one another (e.g. 1≺2 ≺3 and 1≺3), represent disjoint events (e.g. 1≺3 and 3≺1) or interact
in more complex ways (e.g. 1 ≺ 2 ≺ 3 and 1 ≺ 4 ≺ 3). A valid probabilistic framework needs to
respect the constraints resulting from the axioms of probability, e.g. p.1≺2≺3/�p.1≺3/.

Our approach is to consider the incomplete tied preferences as censored permutations, i.e. we
assume a distribution p.π/ over permutations π∈�n (�n is the symmetric group of permutations
of order n) that describes the complete without-ties preferences in the population. The data that
are available to the recommender system (1) are sampled by drawing m independent identically
distributed (IID) permutations from p :π1, . . . , πm ∼IID p, followed by censoring to result in the
observed preferences S1, . . . , Sm

πi ∼p.π/, Si ∼p.S|πi/, i=1, . . . , m+1, .3/

p.π|S/= I.π ∈S/p.π/∑
σ∈S

p.σ/
, .4/

p.S|π/= p.π|S/q.S/

p.π/
= I.π ∈S/p.π/q.S/

p.π/
∑
σ∈S

p.σ/
= I.π ∈S/q.S/∑

σ∈S

p.σ/
.5/

where q.S/ represents the probability of observing the censoring S consisting of permutations
σ or equivalently it describes a random process resulting in a particular censoring (specifically,
it is not equal to Σσ∈S p.σ/).

Although many approaches for estimating p given S1, . . . , Sm are possible, experimental evi-
dence points to the fact that, in recommendation systems with high n, the distribution p does
not follow a simple parametric form such as the Mallows, Bradley–Terry or Thurstone models
(Marden, 1996). Fig. 1 gives a demonstration how the number of modes and complexity increase
with n. In Fig. 1, which appears also in Kidwell et al. (2008), we show a density estimate (using
kernel smoothing) of rankings embedded in a two-dimensional space by using multi-dimen-
sional scaling. The distance function in this case was the average Kendall’s τ -distance over all
possible permutations that are consistent with the partial rankings. Fig. 1 shows three different
panels corresponding to different data sets of increasing n. (Note that the choice of metric on
rankings is not straightforward; here Kendall’s τ is a reasonable choice as it displays a high
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(a) (b) (c)

Fig. 1. Heat map visualization of the density of ranked data by using multi-dimensional scaling with expected
Kendall’s τ -distance: (a) APA voting (nD5); (b) Jester (nD100); (c) EachMovie (nD1628)

degree of sensitivity producing separation even when projected into two dimensions. None of
these cases show a simple parametric form, and the complexity of the density increases with
the number of items n. This motivates the use of non-parametric estimators for modelling pref-
erences over a large number of items.) As n increases, the number of the modes increases and
the density surface itself becomes less regular. Intuitively, different probability mass regions
correspond to different types of judges. For example in movie preferences probability modes
may correspond to genre as fans of drama, action, comedy, etc. having similar preferences.

We therefore propose to estimate the underlying distribution p on permutations extending
non-parametric kernel smoothing on rankings (Lebanon and Mao, 2008). The standard kernel
smoothing formula applies to the permutation setting as

p̂.π/= 1
m

m∑
i=1

Kh{T.π, πi/}

where π1, . . . , πm ∼IID p, T is a distance on permutations such as Kendall’s τ -distance and
Kh.r/ = h−1K.r=h/ is a normalized unimodal function. In the case at hand, however, the ob-
served preferences πi as well as π are replaced with permutations sets S1, . . . , Sm, R representing
incomplete tied preferences

p̂.R/= ∑
π∈R

p̂.π/= 1
m

m∑
i=1

∑
π∈R

∑
σ∈Si

q.σ|Si/Kh{T.π, σ/} .6/

where q.σ|Si/ serves as a surrogate for the unknown p.σ|Si/∝ I.σ ∈Si/ p.σ/ (see equation (4)).
For example, a uniform q.σ|Si/ indicates that, given a censored ranking corresponding to a
user’s ratings, the precise permutation of preferences is uniform over the set of compatible
permutations.

Selecting q.σ|Si/ = p.σ|Si/ would lead to consistent estimation of p.R/ in the limit h → 0,
m →∞ assuming positive p.π/ and p.S/ by appealing to standard kernel density consistency
results found in Wand and Jones (1995). Such a selection, however, is generally impossible since
p.π/ and therefore p.σ|Si/ are unknown.
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In general the specific choice of the surrogate q.σ|S/ is important as it may influence the
estimated probabilities. Furthermore, it may cause underestimation or overestimation of p̂.R/

in the limit of large data. An exception occurs when the sets S1, . . . , Sm are either subsets of R or
disjoint from R. In this case limh→0{Kh.π, σ/}= I.π =σ/, resulting in the following limit (with
probability 1 by the strong law of large numbers):

lim
m→∞ lim

h→0
{p̂.R/}= lim

m→∞

{
1
m

m∑
i=1

I.Si ⊂R/
∑

σ∈Si

q.σ|Si/

}
.7/

= lim
m→∞

{
1
m

m∑
i=1

I.Si ⊂R/

}
= lim

m→∞

{
1
m

m∑
i=1

I.πi ∈R/

}
=p.R/: .8/

Thus, if our data are comprised of preferences Si that are either disjoint or a subset of R we
have consistency regardless of the choice of the surrogate q. Such a situation is more realistic
when the preference R involves a small number of items and the preferences Si, i = 1, . . . , m,
involve a larger number of items. This is often so for recommendation systems where individuals
report preferences over 10–100 items and we are mostly interested in estimating probabilities of
preferences over fewer items such as i≺j, k or i≺j, k≺ l (see Section 4). Nevertheless, real world
recommendation systems data may show sparsity patterns that violate this assumption. In such
cases the method proposed may still be used for engineering purposes but the consistency result
no longer applies.

The main difficulty with the estimator above is the computation of
∑
π∈R

∑
σ∈Si

q.σ|Si/Kh{T.π, σ/}:

In the case of high n and only a few observed items k the sets Si and R grow factorially as
.n−k/! making a naive computation of equation (6) intractable for all except the smallest n. In
the next section we explore efficient computations of these sums for a triangular kernel Kh and
a uniform q.π|S/.

3. Computationally efficient kernel smoothing

In previous work (Lebanon and Mao, 2008) the estimator (6) is proposed for tied (but complete)
rankings. That work derives closed form expressions and efficient computation for estimator
(6) by assuming a Mallows kernel (Mallows, 1957):

Kh{T.π, σ/}= exp
{

−T.π, σ/

h

}
n∏

j=1

1− exp.−1=h/

1− exp.−j=h/
.9/

where T is Kendall’s τ -distance on permutations (below I.x/=1 for x> 0 and 0 otherwise)

T.π, σ/=
n−1∑
i=1

∑
l>i

I{π σ−1.i/−π σ−1.l/}: .10/

Unfortunately these simplifications do not carry over to the case of incomplete rankings where
the sets of consistent permutations S1, . . . , Sm are not cosets of the symmetric group. As a result
the problem of probability estimation in recommendation systems where n is high and many
items are missing is particularly challenging. However, as we show below, replacing the Mal-
lows kernel (9) with a triangular kernel leads to efficient computation in the case of ties and
incomplete rankings. Specifically, the triangular kernel on permutation is
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Kh{T.π, σ/}={1−h−1 T .π, σ/}I{h−T.π, σ/}=C .11/

where the bandwidth parameter h represents both the support (the kernel is 0 for all larger
distances) and the inverse slope of the triangle (Fig. 2). As we show below the normalization
term C is a function of h and may be efficiently computed by using generating functions. Table
1 displays the linear decay of equation (11) for the simple case of permutations over n=3 items.

3.1. Combinatorial generating function
Generating functions, a tool from enumerative combinatorics, allow efficient computation of
estimator (6) by concisely expressing the distribution of distances between permutations. Ken-
dall’s τ T.π, σ/ is the total number of discordant pairs or inversions between π and σ (Stanley,
2000) and thus its computation becomes a combinatorial counting problem. We associate the
following generating function with the symmetric group of order n permutations:

Gn.z/=
n−1∏
j=1

j∑
k=0

zk: .12/

As shown for example in Stanley (2000) the coefficient of zk of Gn.z/, which we denote as
[zk]Gn.z/, corresponds to the number of permutations σ for which T.σ, π′/ = k. For exam-
ple, the distribution of Kendall’s τ T.·, π′/ over all permutations of three items is described by
G3.z/= .1+z/.1+z+z2/=1z0 +2z1 +2z2 +1z3, i.e. there is one permutation σ with T.σ, π′/=
0, two permutations σ with T.σ, π′/=1, two with T.σ, π′/=2 and one with T.σ, π′/=3. Another
important generating function is
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Fig. 2. Tricube ( ), triangular ( ) and uniform ( ) kernels on R with bandwidth (a) hD1 and
(b) hD2

Table 1. Triangular kernel on permutations (nD
3)

K3( · ,1≺2≺3) K5( · ,1≺2≺3)

1≺2≺3 0.50 0.33
1≺3≺2 0.25 0.22
2≺1≺3 0.25 0.22
3≺1≺2 0 0.11
2≺3≺1 0 0.11
3≺2≺1 0 0
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Hn.z/= Gn.z/

1− z
= .1+ z+ z2 + z3 + . . . /Gn.z/

where [zk]Hn.z/ represents the number of permutations σ for which T.σ, π′/�k.

Proposition 1. The normalization term C.h/ is given by C.h/ = [zh]Hn.z/ − h−1[zh−1] ×
G′

n.z/=.1− z/.

Proof. The proof factors the non-normalized triangular kernel CKh.π, σ/ to I{h−T.π, σ/}
and h−1 T.π, σ/ I{h−T.π, σ/} and makes the following observations. First we note that sum-
ming the first factor over all permutations may be counted by [zh] Hn.z/. The second obser-
vation is that [zk−1] G′

n.z/ is the number of permutations σ for which T.σ, π′/ = k, multiplied
by k. Since we want to sum over that quantity for all permutations whose distance is less than
h we extract the .h− 1/th coefficient of the generating function G′

n.z/Σk�0 zk =G′
n.z/=.1 − z/.

We thus have

C = ∑
σ:T.π′,σ/�h

1−h−1 ∑
σ:T.π′,σ/�h

T.π′, σ/= [zh]Hn.z/−h−1[zh−1]
G′

n.z/

1− z
:

Proposition 2. The complexity of computing C.h/ is O.n4/.

Proof. We describe a dynamic programming algorithm to compute the coefficients of Gn by
recursively computing the coefficients of Gk from the coefficients of Gk−1, k =1, . . . , n. The gen-
erating function Gk.z/ has k.k +1/=2 non-zero coefficients and computing each of them (using
the coefficients of Gk−1) takes O.k/. We thus have O.k3/ to compute Gk from Gk−1 which implies
O.n4/ to compute Gk, n=1, . . . , n. We conclude the proof by noting that once the coefficients
of Gn have been computed the coefficients of Hn.z/ and Gn.z/=.1−z/ are computable in O.n2/

as these are simply cumulative weighted sums of the coefficients of Gn.

Note that computing C.h/ for one or many h-values may be done off line before the arrival
of the rankings and the need to compute the estimated probabilities.

Denoting by k the number of items that are ranked in either S or R or both, the computation
of p̂.π/ in equation (6) requires O.k2/ on-line and O.n4/ off-line complexity if either non-zero
smoothing is performed over the entire data, i.e. maxπ∈R maxn

i=1maxσ∈Si{T.σ, π/}<h or, alter-
natively, we use the modified triangular kernel KÅ

h .π, σ/∝ .1−h−1/T.π, σ/ which is allowed to
take negative values for the most distant permutations (normalization still applies though).

Proposition 3. For two sets of permutations S and R corresponding to tied incomplete rank-
ings

1
|S||R|

∑
π∈S

∑
σ∈R

T.π, σ/= n.n−1/

4
− 1

2

n−1∑
i=1

n∑
j=i+1

{1−2 pij.S/}{1−2 pij.R/}, .13/

pij.U/=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I{τU.j/− τU.i/} i and j are ranked in U with τU.i/ = τU.j/,

1− τU.i/+{φU.i/−1}=2
k +1

only i is ranked in U,

τU.j/+{φU.j/−1}=2
k +1

only j is ranked in U,
1
2 otherwise

with τU.i/=minπ∈U{π.i/} and φU.i/ being the number of items that are tied to i in U.



Probabilities in Recommendation Systems 479

Proof. We note that equation (13) is an expectation with respect to the uniform measure.
We thus start by computing the probability pij.U/ that i is preferred to j for U =S and U =R

under the uniform measure. Five scenarios exist for each of pij.U/ corresponding to whether
each of i and j are ranked by S and R. Starting with the case that i is not ranked and j is
ranked, we note that i is equally likely to be preferred to any item or to be preferred to. Given
the uniform distribution over compatible rankings item j is equally likely to appear in positions
τU.j/, . . . , τU.j/+φU.j/−1. Thus

pij = 1
φU.j/

τU.j/

k +1
+ . . . + 1

φU.j/

τU.j/+φU.j/−1
k +1

= τU.j/+{φU.j/−1}=2
k +1

: .14/

Similarly, if j is unknown and i is known then pij + pji = 1. If both i and j are unknown
either ordering must be equally likely given the uniform distribution, making pij = 1

2 . Finally,
if both i and j are known pij = 1, 1

2 , 0 depending on their preference. Given pij, linearity of
expectation, and the independence between rankings, the change in the expected number of
inversions relative to the uniform expectation n.n−1/=4 can be found by considering each pair
separately:

E{T.i, j/}= 1
2 P.i and j disagree /− 1

2 P.i and j agree /

= 1
2 [pij.σ/{1−pij.π/}+{1−pij.σ/}pij.π/

−pij.σ/ pij.π/−{1−pij.σ/}{1−pij.π/}]

=− 1
2{1−2 pij.σ/}{1−2pij.π/}:

Summing the n.n−1/=2 components yields the desired quantity.

Corollary 1. Denoting the number of items ranked by either S or R or both as k, and
assuming either h > maxπ∈R maxn

i=1maxσ∈Si{T.σ, π/} or that the modified triangular kernel
KÅ

h .π, σ/∝ .1−h−1/ T.π, σ/ is used, the complexity of computing p̂.R/ in equation (6) (assum-
ing uniform q.π|Si/) is O.mk2/ on line and O.n4/ off line.

Proof. The proof follows from noting that equation (6) reduces to O.n4/ off-line computa-
tion of the normalization term, O.k2/ on-line computation of the form equation (13) and O.m/

computation of the final summation.

4. Applications and case-studies

We divide our experimental study into three parts. In the first we examine the task of predicting
probabilities. The remaining two parts use these probabilities for rank prediction and rule dis-
covery. Motivation for the multiple-evaluation paradigms that are used can be found in both
the probabilistic nature of the estimated rankings and the widely acknowledged difficulty in the
evaluation of recommender systems (Herlocker et al., 2004).

In our experiments we used three data sets. The Movielens data set (http://www.group
lens.org) contains 1 million ratings from 6040 users over 3952 movies on a scale of 1–5. The
EachMovie data set (http://www.grouplens.org/node/76) contains 2.6 million rat-
ings from 74424 users over 1648 movies on a scale of 0–5. The Netflix data set (http://www.
netflixprize.com/community) contains 100 million movie ratings from 480 189 users
over 17 770 movies on a scale of 1–5. In all of these data sets users typically rated only a small
number of items. Histograms of the distribution of the number of votes per user, number of
votes per item and vote distribution appear in Fig. 3.
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Fig. 3. Histograms of (a)–(c) the number of user votes per movie, (d)–(f) the number of movies ranked per
user and (g)–(i) votes aggregated over all users and movies: (a), (d), (g) Movielens; (b), (e), (h) Netflix; (c),
(f), (i) EachMovie

4.1. Estimating probabilities
We consider here the task of estimating p̂.R/ where R is a set of permutations corresponding
to a tied incomplete ranking. Such estimates may be used to compute conditional estimates
P̂.R|Sm+1/ which are used to predict which augmentations R of Sm+1 are highly probable. For
example, given an observed preference 3 ≺ 2 ≺ 5 we may want to compute p̂.8 ≺ 3 ≺ 2 ≺ 5|3 ≺
2≺5/= p̂.8≺3≺2≺5/=p̂.3≺2≺5/ to see whether item 8 should be recommended to the user.

For simplicity we focus in this section on probabilities of simple events such as i≺j or i≺j ≺k.
The next section deals with more complex events. In our experiment, we estimate the probability
of i≺ j for the n=53 most rated movies in Netflix and m=10000 users who rate most of these
movies. The probability matrix of the pairs is shown in Fig. 4 where each cell corresponds to
the probability of preference between a pair of movies determined by row j and column i. In
Fig. 4(a) the rows and columns are ordered by average probability of a movie being preferred to
others r.i/=Σjp̂.i≺ j/=n with the most preferred movie in the first row and column (Fig. 4(c)
indicates the ordering according to r.i/). It is interesting to note the high level of correlation
between the average probabilities and the pairwise probabilities as indicated by the uniform
colour gradient. In Fig. 4(b) the movies were ordered first by popularity of genres and then by
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Fig. 4. (a), (b) Estimated probability that movie i is preferred to movie j and (c), (d) plot of r.i/DΣj p̂.i � j/=n
for all movies grouped by genre: the movies were ordered by (a), (c) r.i/ and (b), (d) first by popularity of
genres and then by r.i/

r.i/. Fig. 4(d) indicates that ordering. The names, genres and both orderings of all 53 movies
appear in Table 2.

The three highest movies in terms of r.i/ are Lord of the Rings: the Return of the King, Finding
Nemo and Lord of the Rings: the Two Towers. The three lowest movies are Maid in Manhat-
tan, Anger Management and The Royal Tenenbaums. Examining the genre (the colours in Figs
4(c) and 4(d)) we see that family and science fiction are generally preferred to others movies
whereas comedy and romance generally receive lower preferences. The drama and action genres
are somewhere in the middle.

Also interesting is the variance of the movie preferences within specific genres. Family movies
are generally preferred to almost all other movies. Science fiction movies, in contrast, enjoy high
preference overall but exhibit a larger amount of variability as a few movies are among the least
preferred. Similarly, the preference probabilities of action movies are widely spread with some
movies being preferred to others and others being less preferred. More specifically (see Fig. 4(b))
we see that the decay of r.i/ within genres is linear for family and romance and non-linear for
science fiction, action, drama and comedy. In these last three genres there are a few really ‘bad’
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Table 2. Information on the 53 most rated movies of Netflix†

Movie Genre Order1 Order2 Mean

Finding Nemo 6 2 1 4.27
Shrek 6 4 2 4.07
The Incredibles 6 5 3 4.06
Monsters, Inc. 6 8 4 4.01
Shrek II 6 9 5 4.13
Lord of the Rings: the Return of the King 1 1 6 4.40
Lord of the Rings: the Two Towers 1 3 7 4.41
Lord of the Rings: the Fellowship of the Ring 1 6 8 4.42
Spider-Man II 1 12 9 3.99
Spider-Man 1 16 10 3.85
The Day After Tomorrow 1 36 11 3.43
Tomb Raider 1 46 12 2.86
Men in Black II 1 47 13 3.04
Pirates of the Caribbean I 3 7 14 4.29
The Last Samurai 3 10 15 3.94
Man on Fire 3 11 16 3.84
The Bourne Identity 3 13 17 3.99
The Bourne Supremacy 3 15 18 3.91
National Treasure 3 17 19 3.53
The Italian Job 3 19 20 3.75
Kill Bill II 3 23 21 3.47
Kill Bill I 3 25 22 3.60
Minority Report 3 31 23 3.61
S.W.A.T. 3 44 24 3.09
The Fast and the Furious 3 45 25 2.84
Ocean’s Eleven 2 14 26 3.98
I, Robot 2 20 27 3.72
Mystic River 2 21 28 3.54
Troy 2 22 29 3.61
Catch Me if You Can 2 24 30 3.73
Big Fish 2 28 31 3.35
Collateral 2 29 32 3.60
John Q 2 34 33 3.07
Pearl Harbor 2 35 34 3.23
Swordfish 2 39 35 3.22
Lost in Translation 2 48 36 2.56
50 First Dates 4 18 37 3.76
My Big Fat Greek Wedding 4 26 38 3.60
Something’s Gotta Give 4 27 39 3.43
The Terminal 4 30 40 3.47
How to Lose a Guy in 10 Days 4 32 41 3.33
Sweet Home Alabama 4 38 42 3.29
Sideways 4 41 43 2.54
Two Weeks Notice 4 43 44 3.11
Mr. Deeds 4 49 45 2.92
The Wedding Planner 4 50 46 2.71
Maid in Manhattan 4 53 47 2.52
The School of Rock 5 33 48 3.33
Bruce Almighty 5 37 49 3.51
Dodgeball: a True Underdog Story 5 40 50 3.19
Napoleon Dynamite 5 42 51 2.57
The Royal Tenenbaums 5 51 52 2.39
Anger Management 5 52 53 3.03

†Columns are movie titles, genres, order1 (the ordering in the upper row of Fig. 4),
order2 (the ordering in the bottom row of Fig. 4) and average ratings. Genres indicated
by numbers from 1 to 6 represent science fiction, drama, action, romance, comedy and
family. The correlation between the average ratings and the average probabilities of being
preferred to others, r.i/=Σj p̂.i≺ j/=n, is 0.93.
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movies that are substantially lower than the rest of the curve. Table 2 shows the full information
including titles, genres and orderings of the 53 most rated movies in Netflix.

We plot the individual values of p̂.i ≺ j/ for three movies: Shrek (family), Catch Me if You
Can (drama) and Napoleon Dynamite (comedy) (Fig. 5). Comparing the three stem plots we
observe that Shrek is preferred to almost all other movies, Napoleon Dynamite is less preferred
than most other movies and Catch Me if You Can is preferred to some other movies but less
preferred than others. Also interesting is the linear increase of the stem plots for Catch Me if
You Can and Napoleon Dynamite and the non-linear increase of the stem plot for Shrek. This
is probably a result of the fact that for very popular movies there are only a few comparable
movies with the rest being very likely to be less preferred movies (p̂.i≺ j/ close to 1).

In a second experiment (Fig. 6) we compare the predictive behaviour of the kernel smoothing
estimator with that of a parametric model (Mallows model) and the empirical measure (the
frequency that the event occurs in the m samples). We evaluate the predictive performance of a
probability estimator by separating the data into two parts: a training set that is used to con-
struct the estimator and a testing set that is used for evaluation via its log-likelihood. A higher
test set log-likelihood indicates that the model assigns high probability to events that occurred.
Mathematically, this corresponds to approximating the Kullback–Leibler divergence between
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Fig. 5. Value p̂.i � j/ for all j for (a) Shrek , (b) Catch Me if You Can and (c) Napoleon Dynamite
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Fig. 6. Test set log-likelihood for kernel smoothing ( ), Mallows’s model (- - - - - - - ) and the empirical
measure (���) with respect to training size m (x -axis) for a small number of items (a) n D 2, (b) n D 3 and
(c) nD 4 for the Movielens data set, (d) nD 3, (e) nD 4 and (f) nD 5 for the Netflix data set and (g) nD 3, (h)
n D 4 and (i) n D 5 for the EachMovie data set: both the Mallows model (which is also intractable for large n,
which is why n�5 in the experiment) and the empirical measure perform worse than the kernel estimator p̂

nature and the model. Since the Mallows model is intractable for large n we chose in this exper-
iment small values of n: 3, 4 and 5.

We observe that the kernel estimator consistently achieves higher test set log-likelihoods
than the Mallows model and the empirical measure. The former is due to the breakdown of
parametric assumptions as indicated by Fig. 1 (note that this happens even for n as low as 3).
This is due to the superior statistical performance of the kernel estimator over the empirical
measure.

4.2. Rank prediction
Our task here is to predict ranking of new unseen items for users. We follow the standard pro-
cedure in collaborative filtering: the set of users is partitioned into two sets: a training set and
a testing set. For each of the test set users we further split the observed items into two sets:
one set used for estimating preferences (together with the preferences of the training set users)
and the second set to evaluate the performance of the prediction (Pennock et al., 2000), i.e. a
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probability density is estimated by applying the estimator to the training data and this density is
then used to predict rankings for a test user conditional on the test user’s observed preferences.
Given a loss function L.i, j/ which measures the loss of predicting rank i when the true rank
is j (rank here refers to the number of sets of equivalent items that are more or less preferred
than the current item) we evaluate a prediction rule by the expected loss. We focus on three loss
functions: L0.i, j/ = 0 if i = j and L0.i, j/ = 1 otherwise, L1.i, j/ = |i − j| which reduces to the
standard collaborative filtering evaluation technique that was described in Pennock et al. (2000)
and an asymmetric loss function (rows correspond to the estimated number of stars (0–5) and
columns to actual number of stars (0–5):

Le =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 3 4 5
0 0 0 2 3 4
0 0 0 1 2 3
9 4 1:5 0 0 0

12 6 3 0 0 0
15 8 4:5 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

: .15/

In contrast with the L0- and L1-loss, Le captures the fact that recommending bad movies as
good movies is worse than recommending good movies as bad.

For example, consider a test user whose observed preference is 3 ≺ 4, 5, 6 ≺ 10, 11, 12 ≺ 23 ≺
40, 50, 60≺100, 101. We may withhold the preferences of items 4 and 11 for evaluation purposes.
The recommendation systems then predict a rank of 1 for item 4 and a rank of 4 for item 11.
Since the true ranking of these items are 2 and 3 the absolute value losses are |1 − 2|= 1 and
|3−4|=1 respectively.

In our experiment, we use the kernel estimator p̂ to predict ranks that minimize the posterior
loss and thus adapts to customized loss functions such as Le. The prediction in this case is a
refinement δ.A/ of the input ranking A which seeks to approximate the true preference B, i.e.
the loss function L{δ.A/, B} quantifies the adverse effect of recommending according to the
rule A → δ.A/. Specifically, assuming that an appropriate loss function is given we select the
prediction rule δÅ that minimizes the posterior loss

δÅ.A/=arg min
Z∈Z

[Ep̂.B|A/{L.Z, B/}] .16/

where Z is a set of potential refinements of A under consideration. This is an advantage of a
probabilistic modelling approach over more ad hoc rule-based recommendation systems.

Fig. 7 compares the performance of our estimator with several standard baselines in the
collaborative filtering literature: two older memory-based methods vector similarity and cor-
relation in Breese et al. (1998) and a recent state of the art non-negative matrix factorization
(Lawrence and Urtasun, 2009). The kernel smoothing estimate performed similarly to the state
of the art estimator but substantially better than the memory-based methods to which it is
functionally similar. Fig. 8 shows the kernel bandwidth selection via cross-validation using the
L1-loss.

4.3. Rule discovery
In the third task, we used the estimator p̂ to detect noteworthy association rules of the type
i≺ j ⇒ k ≺ l (if i is preferred to j then probably k is preferred to l). Such association rules are
important for both business analytics (devising marketing and manufacturing strategies) and
recommendation system engineering. Specifically, we used p̂ to select sets of four items i, j, k
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Fig. 7. Prediction loss with respect to training size on (a)–(c) the Movielens data set (6040 users over 3952
movies), (d)–(f) Netflix (10000 users over 800 movies) and (g)–(i) EachMovie (10000 users over 1000 movies)
(the kernel smoothing estimate performed similarly to the state of the art non-negative matrix factorization
but substantially better than the memory-based methods to which it is functionally similar) ( , vector
similarity; �, correlation; - - - - - - - , non-negative matrix factorization; ♦, rank): (a), (d), (g) 0–1 loss L0; (b), (e),
(h) L1-loss; (c), (f), (i) asymmetric loss Le

and l for which the mutual information I.i≺ j; k ≺ l/ is maximized. The mutual information is

I.i≺ j; k ≺ l/=p.i≺ j ∩k ≺ l/ log
{

p.i≺ j ∩k ≺ l/

p.i≺ j/p.k ≺ l/

}
+p.j ≺ i∩k ≺ l/ log

{
p.j ≺ i∩k ≺ l/

p.j ≺ i/p.k ≺ l/

}

+p.i≺ j ∩ l≺k/ log
{

p.i≺ j ∩ l≺k/

p.i≺ j/p.l≺k/

}
+p.j ≺ i∩ l≺k/ log

{
p.j ≺ i∩ l≺k/

p.j ≺ i/p.l≺k/

}
:

.17/

After these sets have been identified we detected the precise shape of the rule (i.e. i≺ j ⇒ k ≺ l

rather than j ≺ i⇒k ≺ l by examining the summands in the mutual information expectation).
Table 3 shows the top 10 rules that were discovered. These rules nicely isolate viewer prefer-

ences for genres such as fantasy, romantic comedies, animation and action (note, however, that
genre information was not used in the rule discovery). To evaluate the rule discovery process
quantitatively we judge a rule i≺ j ⇒k ≺ l to be good if i and k are of the same genre and j and
l are of the same genre. This quantitative evaluation appears in Fig. 9 where it is contrasted
with the same rule discovery process (maximizing mutual information) based on the empirical
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measure. Although this rule discovery experiment is scored as a success on the basis of the genre
of the movies identified, this criterion is only a proxy for movie similarity in the absence of some
known measurement. A qualitative examination of these results shows that much more than
genre is recovered; for example Table 3, rule 1, states if Shrek ≺ Lord of the Rings: the Fellowship
of the Ring then Shrek II ≺ Lord of the Rings: the Return of the King, i.e. movies of the same
series are identified as preferred to other movies in the same series. Table 4 shows the top rules
that were discovered within the same genre.

In another rule discovery experiment, we used p̂ to detect association rules of the form
i ranked highest⇒ j ranked second highest by selecting i and j that maximize the score

p{π.i/=1, π.j/=2}
p{π.i/=1/p.π.j/=2}

between pairs of movies in the Netflix data. We similarly detected rules of the form i ranked
highest⇒ j ranked lowest by maximizing the scores

p{π.i/=1, π.j/= last}
p{π.i/=1/p.π.j/= last}

between pairs of movies.
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Table 3. Top 10 rules discovered by the kernel smoothing estimator on Netflix in terms of maximizing mutual
information

Shrek ≺ Lord of the Rings: the Fellowship of the ⇒ Shrek II≺ Lord of the Rings: the Return of the King
Ring

Shrek ≺ Lord of the Rings: the Fellowship of the ⇒ Shrek II≺ Lord of the Rings: the Two Towers
Ring

Shrek II ≺ Lord of the Rings: the Fellowship of ⇒ Shrek≺ Lord of the Rings: the Return of the King
the Ring

Kill Bill II ≺ National Treasure ⇒ Kill Bill I ≺ I, Robot
Shrek II ≺ Lord of the Rings: the Fellowship of ⇒ Shrek II≺ Lord of the Rings: the Two Towers

the Ring
Lord of the Rings: the Fellowship of the Ring ≺ ⇒ Lord of the Rings: the Two Towers≺ Shrek

Monsters, Inc.
National Treasure ≺ Kill Bill II ⇒ Pearl Harbor ≺ Kill Bill I
Lord of the Rings:the Fellowship of the Ring ≺ ⇒ Lord of the Rings: the Return of the King≺ Shrek

Monsters, Inc.
How to Lose a Guy in 10 Days ≺ Kill Bill II ⇒ 50 First Dates≺ Kill Bill I
I, Robot ≺ Kill Bill II ⇒ The Day After Tomorrow ≺ Kill Bill I
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Fig. 9. Quantitative evaluation of the rule discovery ( , kernel; �, empirical): the x -axis represents the
number of rules discovered (i.e. increasing values on the x -axis correspond to selecting additional sets of
movies with decreasing mutual information) and the y -axis represents the frequency of good rules in the
discovered rule; here a rule i � j )k � l is considered good if i and k are of the same genre and j and l are
of the same genre

Part (a) of Table 5 shows the top nine rules of 100 most rated movies, which nicely represents
movie preference of similar type, e.g. romance, comedies and action. Part (b) of Table 5 shows
the top nine rules which represent like and dislike of different types of movie, e.g. like of romance
leads to dislike of action or thriller. Although the paired movies in part (a) both come from
the same genre, examining a specific pair The Royal Tenenbaums ⇒ American Beauty and refer-
ring to the Internet movie database descriptions reveals that these movies are described by
many common terms such as ‘dark humour, depression, deadpan, drugs, husband–wife rela-
tionship,...’. To summarize, although the relationships identified are in part judged to be good
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Table 4. Rules within the same genre (top three, science fiction; middle three, drama; bottom three, action)
discovered by the kernel smoothing estimator on Netflix in terms of maximizing mutual information†

Spider-Man ≺ Lord of the Rings: the Fellowship ⇒ Spider-Man II ≺ Lord of the Rings: the Return of the King
of the Ring

The Day After Tomorrow ≺ Lord of the Rings: ⇒ Spider-Man II≺ Lord of the Rings: the Return of the King
the Fellowship of the Ring

Men in Black II ≺ Spider-Man ⇒ Tomb Raider ≺ Spider-Man II
Pearl Harbor ≺ Catch Me if You Can ⇒ Troy ≺ Mystic River
I, Robot ≺ Catch Me if You Can ⇒ Troy ≺ Ocean’s Eleven
Collateral≺ I, Robot ⇒ Lost in Translation ≺ Pearl Harbor
National Treasure ≺ Kill Bill II ⇒ S.W.A.T. ≺ Kill Bill I
The Fast and the Furious ≺ Kill Bill II ⇒ The Italian Job ≺ Kill Bill I
The Bourne Supremacy ≺ Man on Fire ⇒ The Bourne Identity ≺ The Last Samurai

†The rules are in the form of i≺ j ⇒k ≺ l, where i, j, k and l are of the same genre.

Table 5. Top rules discovered by kernel smoothing estimate
on Netflix

(a) Like A ⇒ like B
Kill Bill I ⇒ Kill Bill II
Maid in Manhattan ⇒ The Wedding Planner
Two Weeks Notice ⇒ Miss Congeniality
The Royal Tenenbaums ⇒ Lost in Translation
The Royal Tenenbaums ⇒ American Beauty
The Fast and the Furious ⇒ Gone in 60 Seconds
Spider-Man ⇒ Spider-Man II
Anger Management ⇒ Bruce Almighty
Memento ⇒ Pulp Fiction

(b) Like A ⇒ dislike B
Maid in Manhattan ⇒ Pulp Fiction
Maid in Manhattan ⇒ Kill Bill I
How to Lose a Guy in 10 Days ⇒ Pulp Fiction
The Royal Tenenbaums ⇒ Pearl Harbor
The Wedding Planner ⇒ The Matrix
Peal Harbor ⇒ Memento
Lost in Translation ⇒ Pearl Harbor
The Day After Tomorrow ⇒ American Beauty
The Wedding Planner ⇒ Raiders of the Lost Ark

or bad by genre, qualitatively these relationships can be seen to be much closer than those
obtained by randomly selecting movies from the same genre.

In a third experiment, we used p̂ to construct an undirected graph where vertices are items
(Netflix movies) and two nodes i and j are connected by an edge if the average score of the rule
i ranked highest ⇒ j ranked second highest and the rule j ranked highest ⇒ i ranked second
highest is higher than a certain threshold. Fig. 10 shows the graph for the 100 most rated
movies in Netflix (only movies with vertex degree greater than 0 are shown). The clusters in the
graph corresponding to vertex colour and numbering were obtained by using a graph partition-
ing algorithm and the graph is embedded in a two-dimensional plane by using standard graph
visualization techniques. Within each of the identified clusters movies are clearly similar with
respect to genre, and an even finer separation can be observed when looking at specific clusters.
For example, clusters 6 and 9 both contain comedy movies, whereas cluster 6 tends towards
slapstick humour and cluster 9 contains romantic comedies.
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Fig. 10. Graph corresponding to the 100 most rated Netflix movies where edges represent high affinity as
determined by the rule discovery process (see the text for more details): 1, American Beauty, Lost in Trans-
lation, Pulp Fiction, Kill Bill I, II, Memento, The Royal Tenenbaums, Napoleon Dynamite...; 2, Spider-Man,
Spider-Man II; 3, Lord of the Rings I, II, III; 4, The Bourne Identity, The Bourne Supremacy; 5, Shrek, Shrek
II; 6, Meet the Parents, American Pie; 7, Indiana Jones and the Last Crusade, Raiders of the Lost Ark; 8, The
Patriot, Pearl Harbor , Men of Honor, John Q, The General’s Daughter, National Treasure, Troy , The Italian
Job...; 9, Miss Congeniality, Sweet Home Alabama, Two Weeks Notice, 50 First Dates, The Wedding Planner,
Maid in Manhattan, Titanic...; 10, Men in Black I, II, Bruce Almighty, Anger Management , Mr. Deeds, Tomb
Raider , The Fast and the Furious; 11, Independence Day, Con Air , Twister, Armageddon, The Rock , Lethal
Weapon IV, The Fugitive, Air Force One

5. Summarizing remarks

Estimating distributions from tied and incomplete data is a central task in many applications with
perhaps the most obvious being collaborative filtering. An accurate estimator p̂ enables going
beyond the traditional item–rank prediction task. It can be used to compute probabilities of inter-
est, to make recommendations using loss functions more closely tied to the user experience, to find
association rules and to perform a wide range of additional data analysis tasks. We demonstrate
the first non-parametric estimator for such data (subject to sampling assumptions in Section 2)
that is computationally tractable, i.e. polynomial rather than exponential in n. The computation
is made possible by using generating function and dynamic programming techniques.

We examine the behaviour of the estimator p̂ in three sets of experiments. The first set of
experiments involves estimating probabilities of interest such as p.i ≺ j/. The second set of
experiments involves predicting preferences of held-out items which is directly applicable in rec-
ommendation systems. In this task, our estimator outperforms other memory-based methods
(to which it is similar functionally) and performs similarly to state of the art methods that are
based on non-negative matrix factorization. In the third set of experiments we examined the
usage of the estimator in discovering association rules such as i≺ j ⇒k ≺ l.

From a practical perspective, robustness to departures from the assumptions must be con-
sidered, specifically random censoring and consistency. Previous work has demonstrated that
the random-censoring assumption may be violated as people tend to rate items that they feel
strongly about more frequently than those for which they do not have strong feelings (Marlin
and Zemel, 2007). Such a tendency should not have a substantial negative effect on recommen-
dations as attitudes towards polarizing movies will be captured and the use of the notion of
compatible sets encourages average ratings for infrequently rated movies. Secondly, although
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consistency may not hold in every case, scenarios can be devised which make it very likely,
e.g. restricting attention to situations with very large n and only estimating probabilities over
a very small number of items. Additionally kernel density estimators tend to flatten peaks and
to lift valleys, but the relative values of the probabilities will retain the same ordering probably
mitigating the effect on the recommendations. In practice, the empirical performance that is
observed over several data sets and in several tasks indicates that any adverse effect based on
departures from these assumptions produces an effect that is no larger than that experienced
with other state of the art approaches. To summarize, although these assumptions may not
always hold, the practical effect is likely to be negligible.
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