
Local Collaborative Ranking

Joonseok Lee
Georgia Tech

Atlanta, GA, USA
jlee716@gatech.edu

Samy Bengio
Google Research

Mountain View, CA, USA
bengio@google.com

Seungyeon Kim
Georgia Tech

Atlanta, GA, USA
seungyeon.kim@gatech.edu

Guy Lebanon
Amazon

Seattle WA, USA
glebanon@gmail.com

Yoram Singer
Google Research

Mountain View, CA, USA
singer@google.com

ABSTRACT
Personalized recommendation systems are used in a wide
variety of applications such as electronic commerce, social
networks, web search, and more. Collaborative filtering ap-
proaches to recommendation systems typically assume that
the rating matrix (e.g., movie ratings by viewers) is low-
rank. In this paper, we examine an alternative approach
in which the rating matrix is locally low-rank. Concretely,
we assume that the rating matrix is low-rank within certain
neighborhoods of the metric space defined by (user, item)
pairs. We combine a recent approach for local low-rank ap-
proximation based on the Frobenius norm with a general
empirical risk minimization for ranking losses. Our exper-
iments indicate that the combination of a mixture of local
low-rank matrices each of which was trained to minimize a
ranking loss outperforms many of the currently used state-
of-the-art recommendation systems. Moreover, our method
is easy to parallelize, making it a viable approach for large
scale real-world rank-based recommendation systems.

Categories and Subject Descriptors
[Information retrieval]: Retrieval tasks and goals—Rec-
ommender systems; [Information systems applications]:
Data mining—Collaborative filtering ; [Machine Learn-
ing]: Supervised learning—Ranking

Keywords
recommender systems, collaborative filtering, ranking

1. INTRODUCTION
Collaborative filtering is a popular approach in recommen-

dation systems whose goal is to estimate the rating of a user
u for an item i based on a partial set of (user, item) ratings.
The set of ratings can be viewed as a partially observed ma-
trix M ∈ Rm×n, with m users and n items. In order to

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567970.

recommend new items, we form predictions for unobserved
entries in M , turning the recommendation task into a matrix
completion task.

Incomplete SVD is a popular matrix completion setting
that uses squared loss and assumes that M is low-rank:

(Û, V̂) = arg min
U,V

∑
(u,i)∈A

(
Mu,i − [UV T]u,i

)2

, (1)

where U ∈ Rm×r, V ∈ Rn×r (r is substantially smaller than
both m and n), and A is the training set of observed entries

in M . The estimated matrix M̂ = Û V̂
>

can be used to esti-
mate ratings Mv,j of user v and item j, including user-item
pairs that are not in the training set (v, j) 6∈ A. After the

matrix M̂ is completed, a recommendation for a particular
user v is formed by picking the items corresponding to the
k highest values in {M̂v,j : (v, j) 6∈ A}.

Despite its popularity, the incomplete SVD approach of-
ten performs poorly compared to more recent models based
on ranked loss minimization. The main reason is that the
SVD in (1) focuses on the task of accurately predicting the
actual values of unobserved entries of M , while ranked loss
minimization methods focus on accurately picking the top k
recommended items, which is a more practical goal.

In contrast to standard collaborative filtering models, our
method does not assume that the matrix M of user-item rat-
ings is low-rank. Instead, we follow [26] and assume that M
is locally low-rank where locality is defined by a neighbor-
hood with respect to a given metric on pairs of (row, column)
indices. In contrast to [26] that uses squared loss reconstruc-
tion, we consider a ranked loss minimization setting that is
more appropriate for real world recommendation systems.
The resulting method, Local Collaborative Ranking (LCR),
outperforms standard ranked collaborative filtering models,
the model proposed in [26], as well as more traditional CF
methods. Furthermore, due to the locality assumption, our
approach is highly parallelizable and scales up to large scale
datasets.

We start by reviewing the rating prediction problem and
the approach that is used to solve it in Section 2. We then
formalize the ranking problem in Section 3. In Section 4, we
describe our model in detail followed by experimental anal-
ysis in Section 5. We then review related work in Section 6
and summarize contribution and future work in Section 7.

2. LOW-RANK MATRIX APPROXIMATION
We recall here the notations from the previous section: the

matrix M ∈ Rm×n denotes the matrix of user-item ratings,
and the observed training data is {(u, i,Mu,i) : (u, i) ∈ A}
where A is the set of user-item training ratings.

2.1 Global SVD
Low rank matrix approximation attempts to find a low-

rank matrix M̂ that best approximates M . Since M̂ is low-

rank, it can be written as M̂ = Û V̂
T

where Û ∈ Rm×r,
V̂ ∈ Rn×r with r � min(m,n). The most well known al-
gorithm to do so is incomplete SVD (1), which minimizes
the squared reconstruction error over the training set. The

resulting approximation M̂ = Û V̂
T

is then used to estimate
ratings and suggest recommendations. Method (1) is one of
the most effective approaches for rating prediction in rec-
ommender systems [21, 28] and has been extensively stud-
ied in the machine learning literature (see for example [25,
37, 36, 22, 35, 27]). The objective function in (1) is non-
convex and an iterative method such as alternating least
square (ALS) or stochastic gradient descent (SGD) should
converge to a local minimum. Often, regularization terms
Ω(U) =

∑
u,k U

2
u,k and Ω(V) =

∑
i,k V

2
i,k are added to the

objective function in (1) to avoid overfitting.

2.2 LLORMA
The Local Low-Rank Matrix Approximation (LLORMA)

model [26] assumes that the space of (row, column) pairs
Φ = {(u, i) : u = 1, . . . ,m, i = 1 . . . , n} is endowed with a
distance function d that measures distances between pairs of
users and items. The distance function leads to the notion
of neighborhoods of user-item pairs, and local low-rank as-
sumption states that M can be approximated by a set of low-
rank matrices M̂s for s ∈ Φ, where each M̂s is low rank and
approximates M particularly well in the neighborhood of s:
Ns = {s′ ∈ Φ : d(s, s′) < α}. Thus, M is approximated by
a number of low-rank matrices – one for each neighborhood
– and each of these matrices describes the original matrix
for some subset of users and items. Note that the distance
function d((a, b), (c, d)) needs not be small when |c− a| and
|d− c| are small since the assignment of users and items to
rows and columns is arbitrary. Thus, the neighborhoods Ns
do not correspond to neat square or circular patches in the
array corresponding to the matrix M .

The intuition behind the LLORMA assumption is as fol-
lows: the entire rating matrix M is not low-rank but a sub-
matrix Ms, restricted to certain types of similar users and
items (for example, children users viewing cartoon movies)
is low-rank. We refer the reader to [26] for information on es-
timating the distance d from the training data. We proceed
with a formal description of the LLORMA model.

LLORMA first identifies q neighborhoods surrounding q
anchor points s1, . . . , sq ∈ Φ. In the experiments we sampled
the anchor points uniformly from the training set, but it is
conceivable that more sophisticated adaptive techniques will
result in a more accurate model. Then, it estimates a low-
rank approximation for each neighborhood by minimizing
the squared reconstruction error, weighted by the proximity
of the reconstruction site to the anchor point. Formally,

each local model is learned by

arg min
U,V

∑
(u,i)∈A

K((u∗, i∗), (u, i))
(

[UV T]u,i −Mu,i

)2

, (2)

where K((u∗, i∗), (u, i)) is a two-dimensional smoothing ker-
nel that measures the proximity of the reconstruction site
(u, i) to the anchor point (u∗, i∗). This kernel function may
be defined in several ways. LLORMA implements this us-
ing a product of two smoothing kernels K(u∗, u) K(i∗, i),
one for users and the other for items. The smoothing ker-
nels are inversely related to distance function, for example
K(x, y) = exp(−cd(x, y)) (Gaussian kernel) or K(x, y) =
(1 − d(x, y)/h)I(d(x, y) < h) (triangular kernel). The op-
timization problem above is essentially a weighted version
of the global SVD optimization problem, but it needs to be
repeated q times - once for each anchor point.

Unfortunately, it is computationally impractical to solve
a new weighted SVD problem above for all user-item pre-
diction pairs. Thus, instead of treating each test user-item
pair as an anchor point and solving the corresponding model
(2), the anchor points are selected before the test user-item
pairs are observed. The q anchor points lead to q local mod-
els that are then linearly combined to provide the estimate
of the test user-item rating. The specific linear combination
rule is given by locally constant regression or non-parametric
Nadaraya-Watson regression

M̂u,i =

q∑
t=1

K((ut, it), (u, i))∑q
s=1 K((us, is), (u, i))

[Û tV̂
T

t]u,i, (3)

where (ut, it) is the anchor point of local model t. In other
words, (3) is a convex combination of each local model’s pre-
diction, ensuring that points closer to the queried point (u, i)
contribute more than those far from it. More details on lo-
cally constant regression and other forms of non-parametric
regression may be found in any book on non-parametric sta-
tistical modeling, for example [44].

The problem with global SVD that is mentioned in the
introduction section applies also to LLORMA: both global
and local SVD focus on squared error minimization and are
thus suitable for rating prediction. However, the primary use
case of modern recommendation systems is in producing a
ranked list of recommendations, and it is the relevancy of
the top items on that list that is crucial to the success of the
recommendation system. In this paper, we derive an analog
of ranked loss analog of LLORMA.

3. LABEL RANKING
A general label ranking problem is defined as follows. Let

X be a domain of instances and Y be a set of labels, possibly
of infinite cardinality. A label ranking for an instance x ∈ X
is a total ordering over Y , where y1 � y2 implies that y1 is
preferred to y2 for x. A label ranking function f : X×Y → R
returns a score indicating how much a label y is relevant to
an instance x. We learn f so as to preserve preference order
as much as possible on training data. That is, given x, for all
y1 � y2 relationship, we fit f to satisfy f(x, y1) > f(x, y2)
(if possible).

In the context of recommendation systems, X is a set of
users U and Y is a set of items I. The function f(u, i)
estimates a preference score for a user u ∈ U on an item
i ∈ I. We fit f such that f(u, i1) > f(u, i2) if user u prefers
item i1 to item i2.

One way to learn this ranking function is to sort the out-
put of a rating predictor using the approach in Section 2.
With this approach, f directly approximate f(u, i) ≈ Mu,i

for all (u, i) pairs on the training set A. With this ranking
function f , the ordered sequence of f(u, 1), . . . , f(u, n) gives
the total order over the labels for user u. (Recall that n is
the number of items.) This approach is called a “point-wise”
method.

Although it is straightforward to learn to approximate rat-
ings with point-wise techniques, doing so suffers from cali-
bration problem [16], or in other words, the interpretation
of scores for one user may not be consistent with the in-
terpretation of the same scores by another user. Directly
approximating rating values (rather than the ordering of
the ratings) misses this effect and may thus lead to lower
accuracy.

However, for both users an ordered pair of items means
the same thing: one item is preferred to another. The
“pair-wise” approach avoids these drawbacks by consider-
ing the preference order seen in training data, rather than
directly estimating the values themselves. With this ap-
proach, f(u, i) does not necessarily fit to Mu,i. Instead, it
tries to preserve the relative order of preferences between
two ratings from the same user. That is, it minimizes a risk
function

E(f) =
∑
u∈U

∑
i,j∈Mu

L(f(u, i)− f(u, j),Mu,i −Mu,j) (4)

where Mu is the set of items rated by the user u. One
choice of loss function L(x, y) is the zero-one loss, penalizing
only when the signs of x and y disagrees. A differentiable
approximation for this function will be introduced later.

One drawback of the pair-wise method is its computa-
tional complexity. As the pair-wise method sums over all
pairs of ratings by the same user, its worst-case complex-
ity is O(k2) for k ratings or per rating average of O(k2/m).
Obviously, it takes much longer than a point-wise method,
whose complexity is O(k). Fortunately, however, rating ma-
trices are usually very sparse, so the number of pairs may
not be intractably large. Also, since many recommendation
ratings lie in a finite set of scores (for example one to five
stars), many ties are bound to occur and dropping these ties
leads to manageable complexity.

4. COLLABORATIVE RANKING
We now turn our attention to the main thrust of the paper

where we present our learning-to-rank algorithm by mini-
mizing a pair-wise loss function. With a pair-wise loss, we
are not interested in the absolute ratings but rather in the
difference in preference values. Let (i, j) denote the indices
of two items rated by a user u. Without loss of general-
ity we assume that item i is preferred over item j, namely
Mu,i > Mu,j . The training set for pair-wise losses is con-
structed using observed entries from A as follows

{(u, i, j,Mu,i −Mu,j) : (u, i), (u, j) ∈ A,Mu,i > Mu,j}. (5)

We use the same factorization form UV T for our model
with U ∈ Rm×r and V ∈ Rn×r where r � min(m,n). In
contrast to the single rating approach presented in Section 2,
M̂u,i would not necessarily be an approximation to Mu,i in
value. That is, for a pair Mu,i > Mu,j , our low-rank estima-
tion should conform with the relative order and difference
in values of M̂u,i and M̂u,j .

In the sequel, we discuss pair-based loss functions. Then,
we describe a natural adaptation of global SVD from Sec-
tion 2.1 to pair-wise loss functions. Finally, we describe the
Local Collaborative Ranking (LCR) method.

4.1 Pair-wise loss functions
A natural loss we consider in ranking is the rate of prefer-

ence disagreement, namely, how many pairs are mis-ordered
by the ranking model. We refer to this loss as the zero-one
error for pairs,

E(f) =
∑
u∈U

1

su

su∑
k=1

1[∆Mk ·∆f(xk) < 0], (6)

where xk designates an ordered pair rated by user u. ∆Mk

and ∆f(xk) denote the difference in observed and predicted
rating for the pair. su is the number of ordered items rated
by the user u. We normalize each user’s pair disagreement
number by su so that each user is weighed equally. The
operator 1 designates the indicator function, 1[true] = 1
and 1[false] = 0. The error described by (6) amounts to the
average number of pairs for which the predicted preference
disagrees with the observed one and can be viewed as an
instance of the generalized ranked loss in [10].

The zero-one loss (6) is not differentiable and finding an f
that minimizes it is computationally intractable. Instead, we
use a smooth surrogate loss function L that forms a convex
upper bound on the zero-one loss function

E(f) =
∑
u∈U

1

su

su∑
k=1

L(∆Mk,∆f(xk)). (7)

We describe and experiment with two different families of
margin-based loss functions, provided in Table 1. The first
scales the loss by ∆M , while the second constructs an addi-
tive margin using ∆M . These losses are analogous to similar
relaxations of the zero-one loss in classification.

4.2 A Global Approximation
Similarly to the incomplete SVD in Section 2.1, we can

learn a global model by minimizing the loss described in (7).
The minimization produces two matrices U, V that when
multiplied UV T they provide an estimate for ratings whose
ordering conforms to the ordering in the training data. To
simplify our derivation we define a ternary function g as
follows:

g(u, i, j)
def
= f(u, i)− f(u, j)

= [UV T]u,i − [UV T]u,j

=

r∑
k=1

Uu,kVi,k −
r∑
k=1

Uu,kVj,k. (8)

Substituting g in (7) we get

E(U, V) =
∑
u∈U

1

su

∑
(i,j)∈Mu

L(∆Mu,i,j , g(u, i, j)), (9)

whereMu is the list of items rated by the user u and ∆Mu,i,j =
Mu,i−Mu,j . Each pair (i, j) is considered once when Mu,i >
Mu,j . Since ∆Mu,i,j does not depend on U and V , it is
viewed as a constant in the optimization process. U and V
are fitted by gradient-based updates:

Uu,k ← Uu,k − ν
∂E(U, V)

∂Uu,k
, Vi,k ← Vi,k − ν

∂E(U, V)

∂Vi,k

Loss Multiplicative version [M] Additive version [A]

Log-loss LLog[M](∆M,∆f) = ∆M log(1 + exp{γ −∆f}) LLog[A](∆M,∆f) = log(1 + exp{γ + ∆M −∆f})
Exp-loss LExp[M](∆M,∆f) = ∆M exp{γ −∆f} LExp[A](∆M,∆f) = exp{γ + ∆M −∆f}
Hinge-loss LHinge[M](∆M,∆f) = ∆M [γ −∆f]+ LHinge[A](∆M,∆f) = [γ + ∆M −∆f]+

Table 1: Pair-based loss functions. The scalar γ is a free parameter which designate a target margin value.

where ν is the learning rate.
We calculate below the derivative of E(U, V) with respect

to the entries of U and V using the chain rule. To obtain the
partial derivatives with respect to Uu,k, we sum over all pairs
of two items i and j rated by the user u. In this case, we
can still assume without loss of generality that Mu,i > Mu,j .
When calculating the partial derivatives with respect to Vi,k
we note that there are two possible cases: item i is preferred
to j or vice versa. The two cases contribute to the two inner
summations in (11).

∂E(U, V)

∂Uu,k
=

1

su

∑
(i,j)∈Mu

∂L(∆Mu,i,j , g)

∂g(u, i, j)

∂g(u, i, j)

∂Uu,k
(10)

∂E(U, V)

∂Vi,k
=
∑
u∈U

1

su

 ∑
j:Mu,i>Mu,j

∂L(∆Mu,i,j , g)

∂g(u, i, j)

∂g(u, i, j)

∂Vi,k

+
∑

j:Mu,i<Mu,j

∂L(∆Mu,i,j , g)

∂g(u, i, j)

∂g(u, i, j)

∂Vj,k

 . (11)

The partial derivatives of g are given by

∂g(u, i, j)

∂Uu,k
= Vi,k − Vj,k (12)

∂g(u, i, j)

∂Va,k
=

{
Uu,k if a = i

−Uu,k if a = j
. (13)

The last step is the calculation of the partial derivatives of
the loss functions in Table 1 with respect to g. For example
in the case of the multiplicative log-loss, we have

∂LLog[M](∆M, g)

∂g
=

∂

∂g
∆M log(1 + eγ−g) =

−∆Meγ−g

1 + eγ−g
.

The partial derivatives need to be adjusted if regularization
is used. For example, L2 regularization (Ω(U) =

∑
u,k U

2
u,k

and Ω(V) =
∑
i,k V

2
i,k) adds a simple linear term to the

partial derivatives.

4.3 Local Collaborative Ranking (LCR)
In LCR, we apply the ideas of local low-rank matrix ap-

proximation to the ranked loss minimization framework. Each
local low-rank model covers a different subgroup of users and
items (see Section 2), which are combined in prediction time
using locally constant regression.

Extending LLORMA to ranking loss minimization is not
straightforward as LLORMA uses two kernel functions (one
for users K(ut, u) and the other for items K(it, i)) as de-
scribed in Section 2.2, while pair-wise losses are formed
based on a single user and two items in each term g(u, i, j).
This leads to three kernel functions: K(ut, u),K(it, i), and
K(it, j).

To estimate the local models, we minimize the sum of
ranked losses L (as in (9)) for all possible item pairs of the

same user. Formally, we need to solve

arg min
Ut,Vt

∑
u∈U

1

su

∑
(i,j)∈Mu

L(∆Mu,i,j , g(u, i, j)) (14)

where t = 1, . . . , q and ∆Mu,i,j = Mu,i −Mu,j . The main
difference from (9) is the definition of g(u, i, j). Instead of
the difference of predictions of a single global model (f(u, i)−
f(u, j)), it is now a combination of local models:

g(u, i, j) ≡ M̂u,i − M̂u,j (15)

=

q∑
t=1

K((ut, it), (u, i))∑q
s=1 K((us, is), (u, i))

[UtV
T
t]u,i

−
q∑
t=1

K((ut, it), (u, j))∑q
s=1 K((us, is), (u, j))

[UtV
T
t]u,j .

After estimating the local models, we combine them at
test time using locally constant regression (as in the case of
LLORMA)

M̂u,i =

q∑
t=1

K((ut, it), (u, i))∑q
s=1 K((us, is), (u, i))

[UtV
T
t]u,i, (16)

where (ut, it) is the anchor point of local model t. Note
that this amounts to a convex combination of local models,
weighted by the proximity of the local anchor point to the
predicted user-item pair.

We can calculate the gradients similarly to (10) and (11),
so long as the loss function L is differentiable. Specifically,
we have

∂g(u, i, j)

∂[Ut]u,k
= [Vt]i,k − [Vt]j,k (17)

∂g(u, i, j)

∂[Vt]a,k
=

{
[Ut]u,k if a = i

−[Ut]u,k if a = j
. (18)

4.3.1 Parallelism
Though we did not explicitly present the full description of

the gradient calculation, it is evident that it is no longer pos-
sible to parallelize the gradient computation as in the case
of LLORMA. In LLORMA, each local model does not in-
teract with other local models during training, so each local
model can be learned in parallel (asynchronously). However,
it is difficult to break the objective function (14) with (15)
into independent optimization problems since the estimate
of each local model influences the other local models.

Nevertheless, we can still take advantage of parallelism in
a slightly different and more complex way. As long as all
local models are at the same phase of the learning process,
we only need the current global estimation M̂u,i and not the
estimation of each individual local model. Since the global
estimate is the same for every local model so long as we es-
tablish a synchronization mechanism, we can compute com-
bined predictions at the beginning of each iteration, freeze
the values, and let each local model use these values during

the gradient estimation. We can thus still update each local
model in parallel, as long as the current estimation M̂u,i is
synchronized at each iteration.

To recap, the learning process consists of the following
steps: we first initialize each model at random; then, we re-
peatedly alternate between the following two steps until a
convergence criterion is met: (i) we calculate current esti-
mations of each local model (Estimation step), and (ii) we
update each local model concurrently using the estimations
(Update step). While the estimation step requires synchro-
nization, the update step can be done asynchronously. Since
the update step is typically the most computationally ex-
pensive, the above computational scheme can significantly
reduce run time.

4.3.2 Distance and Smoothing Kernel
In order to complete the derivation of the algorithm, we

need to endow the space of recommendations with a met-
ric between users and analogously a metric between items.
Such metrics can be constructed using side information, for
example, users’ age, gender, and so on (either using standard
distances or using metric learning techniques, for example

Algorithm 1 The LCR Learning Algorithm

1: Input: M ∈ Rm×n
2: Parameters: number of local models q, local rank r,

learning rate ν, regularization coefficient λ
3: Define: A as the set of observed entries in M
4: for all t ∈ {1, ..., q} do
5: Initialize Ut ∈ Rm×r, Vt ∈ Rn×r randomly.
6: Pick an observed pair (ut, it) from M at random.
7: end for
8: while not-converged do
9: // Estimation step (Synchronization)

10: for all (u, i) ∈ A do
11: wu,i ←

∑q
t=1 K(ut, u)K(it, i)

12: fu,i =
∑q
t=1

K(ut,u)K(it,i)
wu,i

[
UtV

T
t

]
u,i

13: end for
14: for all (u, i) ∈ A and (u, j) ∈ A do

15: `u,i,j = ∂E
∂g

∣∣∣
g=fu,i−fu,j

16: end for
17: // Update step
18: for all t ∈ {1, ..., q} in parallel do
19: ∀u ∈ {1, ...,m} : [∆U]u ← 0
20: ∀i ∈ {1, ..., n} : [∆V]i ← 0
21: for all (u, i) ∈ A and (u, j) ∈ A do
22: if Mu,i > Mu,j then

23: [∆U]u ← [∆U]u + (K(ut,u)·K(it,i)
wu,i

· [Vt]i
24: −K(ut,u)·K(it,j)

wu,j
· [Vt]j) · `u,i,j

25: [∆V]i ← [∆V]i + K(ut,u)·K(it,i)
wu,i

· [Ut]u · `u,i,j
26: [∆V]j ← [∆V]j − K(ut,u)·K(it,j)

wu,j
· [Ut]u · `u,j,i

27: end if
28: end for
29: ∀u ∈ {1, ...,m} : [Ut]u ← [Ut]u− ν([∆U]u

|U|·su +λ[Ut]u)

30: ∀i ∈ {1, ..., n} : [Vt]i ← [Vt]i − ν([∆V]i
|U|·su + λ[Vt]i)

31: end for
32: end while
33: output: UtV

T
t , t = 1, . . . , q

Algorithm 2 The LCR Prediction

1: Input: learned local models UtV
T
t (t = 1, . . . , q), test

point (u∗, i∗)

2: return M̂u,i =
∑q
t=1

K(ut,u
∗)K(it,i

∗)∑q
s=1K(us,u∗)K(is,i∗)

[
UtV

T
t

]
u∗,i∗

[48] or [23, 24, 11]) However, many datasets (including most
public datasets) do not include such data, in which case d
can be based on the partially observed matrix M .

One possible approach is to construct the distance be-
tween two users based on the correlation of the two users
(excluding unobserved ratings), and construct similarly the
distance between two items. This approach does not perform
well since the partially observed matrix is very sparse, lead-
ing to poor estimates of correlation and distance. Instead,
we factorize M using incomplete SVD (1) and obtain two
latent representation matrices U and V of users and items
respectively. We then proceed to construct the distance be-
tween two users based on the normalized inner-product of
row i and row j of the matrix U ,

arccos

(
〈ui, uj〉
‖ui‖ · ‖uj‖

)
,

where we denote by ui and uj the i and j rows of U . The
analogous expression with V replacing U may be used to
construct the distance between two items.

We used a product kernelK((ut, it), (u, i)) = K(ut, u)K(it, i),
where each component kernel is an Epanechnikov kernel
(K(s1, s2) = 3/4(1 − d(s1, s2)2)1[d(s1, s2) < h]) with dis-
tances computed as described above. We also tried uniform
and triangular kernel, but the performance was worse than
Epanechnikov kernel, in agreement with the theory of kernel
smoothing [44].

4.3.3 The Algorithm
The pseudo-code of the resulting learning algorithm is pro-

vided in Algorithm 1. We use an L2 regularization scheme,
but other kinds of regularization can be used instead. Pre-
diction of an unseen test example (u∗, i∗) is described in
Algorithm 2.

5. EXPERIMENTS
We conducted experiments to evaluate the performance of

the proposed LCR approach on real world datasets. In the
first set of experiments, we varied the LCR hyper-parameters
in order to better understand the dependency of LCR on
them. In the second set of experiments, we compared the
performance of LCR method with other well-known ranking
methods for recommendation systems.

5.1 Experimental Setting

Data Split.
We evaluate the performance of the learning algorithm

by separating the data into a training part, used to train
the model, and a test part, used to evaluate it. In order
to evaluate the sensitivity of the algorithm to the size of
the training set, one can vary either the number of avail-
able training ratings per user, or the proportion of training
ratings per user, keeping the rest of the ratings for the test
set. Since users have a variable number of ratings [40, 33],

the number of training and test ratings per user can vary
significantly depending on this choice.

In the literature, CofiRank [46] introduced an experimen-
tal setting which fixes the number of training ratings per
user. In this setting, we randomly choose a constant num-
ber N of training ratings per user, and all other ratings
are kept in the test set. Users without enough ratings are
dropped from the test set. For example, for a user with
100 ratings and N = 10, we use 10 ratings for training and
90 for test. Another user with 8 ratings is dropped as this
user does not satisfy the minimum requirement. This eval-
uation procedure has low variance since users in the test
set typically have a large number of ratings. The evalua-
tion is biased towards frequent raters, as we drop users with
few ratings. This evaluation method has recently became
standard practice [46, 1, 43, 13] and thus we adopt it in
our experiments where we compare the performance of LCR
with others methods (Section 5.3).

The alternative evaluation method keeps a fixed propor-
tion of ratings for each user in the training set and moves
the rest of the observations to the test set (regardless of the
number of available ratings for each user). For example, if
the ratio is 0.5, a user with 100 ratings will have 50 of its rat-
ings kept for training and the remaining 50 used for testing.
A user with 8 ratings is not dropped, but trained with 4 rat-
ings and tested with the remaining 4 ratings. This scheme is
less biased since it contains users with a few ratings as well
as users with many ratings, but it may have higher variance
due to the inclusion of users with a small number of ratings.

We experiment with both approaches. In the first set of
experiments (Section 5.2) where we investigate the depen-
dency of LCR on its hyper-parameters, we used the fixed
ratio setting. In the second set of experiments (Section 5.3),
where we investigate the performance of LCR relative to
other recommendation systems, we report results with a
fixed number of ratings (as in CofiRank). This choice was
made to facilitate a comparison with perviously published
results using the fixed number of ratings setting.

Evaluation Metrics.
We use three evaluation measures, which are widely used

to evaluate ranking approaches. Zero-one Error is the av-
erage ratio of correctly ordered test pairs, averaged over all
users and is based on the zero-one ranking loss (6) (giving
constant loss when the relative order of preferences contra-
dicts the ground truth):

E0/1 =
∑
u∈U

∑
i∈Tu

∑
j∈Mu∪Tu\{i}

1

Zu
1[∆Mu,i,j · g(u, i, j) < 0],

where Zu = |U | · |Tu| · (|Mu ∪ Tu| − 1), and Mu and Tu are
the set of available ratings for user u in the train and test
sets respectively.

Note that we compare the relative order of an item in
the test set with all other known ratings, including those in
training set. In other words, pairs of items belonging to the
train and test sets are used as well as pairs of items that
belong only to the test set. Pairs of items only belonging to
the train set are not used for testing.

Average Precision is defined as the area under the precision-
recall curve, and is given by

AvgP =
1

|U |
∑
u∈U

∫ 1

0

P (r)dr,

where the integration variable r ranges over all possible re-
call levels and P (r) is the precision at recall r. In practice,
the integral is replaced with a finite sum over every position
in the ranked sequence of recommendations.

DCG@k takes into account the order of recommended
items in the list by discounting the importance and is for-
mally given by

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
,

where i ranges over positions in the recommendation list and
reli indicates how much the ith item is relevant to the user
(we use the observed rating score for this quantity). NDCG
is the ratio of DCG to the maximum possible DCG for that
user. This maximum occurs when the recommended items
are presented in decreasing order of user preference. NDCG
is perhaps the most popular evaluation metric, reflecting
the importance of retrieving good items at the top of the
ranking. In our experiments we use NDCG with k = 10.

Datasets.
We used three real-world datasets. MovieLens 100K1 con-

tains 943 users and 1,682 items with 6.3% (user, item) pairs
rated (or 6.3% dense). This small dataset is ideal for quickly
benchmarking several models, so we used it to explore the
importance of various hyper-parameters. We also used the
bigger EachMovie dataset, with 61,265 users, 1,648 items,
and a density 2.8% ratings. These two datasets are widely
used in the literature. In addition, we used the Yelp2 dataset
(43,873 users and 11,537 items, with 0.04% ratings), which
was released for the Yelp business rating prediction chal-
lenge at ACM RecSys 2013. This dataset is the most recent
one, reflecting a recent trend of extreme sparsity.

Model Parameters.
We varied the number of local models in the range {10, 20,

30, 40, 50}, the rank or latent space dimension in the set {5,
10, 15, 20}, and the loss functions {LLog[M], LLog[A], LExp[M],
LHinge[A]} in Table 1 with γ = 0. We used Epanechnikov ker-
nel as a smoothing kernel as it achieves the lowest integrated
squared error [44] (with kernel bandwidth of 0.8). We also
used L2-regularization, where the regularization coefficient
was determined by cross-validation. Cross validation was
also used to determine early stopping. In the cross valida-
tion procedure, we set aside 20% of the training data for
validation purpose. Note that different evaluation metrics
typically lead to different stopping times. In our experi-
ments, we stopped either when the improvement in training
error got smaller than some threshold (0.001) or when the
algorithm reached 200 iterations.

5.2 Trend Analysis
We first show how our LCR model behaves with different

combinations of parameters. Specifically, we vary the rank
of each local model in {5, 10, 15, 20}, and the number of local
models in {10, 20, 30, 40, 50}. We used the MovieLens 100K
dataset with fixed ratio split (ratio = 0.5) for this part of
the experiments.

1http://www.grouplens.org/
2http://recsys.acm.org/recsys13/recsys-2013-challenge-
workshop/

0.22

0.24

0.26

0.28

0.30

0.32

0 50 100 150 200

Iteration

Zero-one Error

Rank=5

Rank=10

Rank=15

Rank=20

0.73

0.74

0.75

0.76

0.77

0.78

0 50 100 150 200

Iteration

Average Precision

Rank=5

Rank=10

Rank=15

Rank=20

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0 50 100 150 200

Iteration

NDCG@10

Rank=5

Rank=10

Rank=15

Rank=20

Figure 1: Effect of the model rank on the performance of LCR, measured by zero-one error (left), average
precision (middle), and NDCG@10 (right). Ranks vary in {5, 10, 15, 20}, while the number of local models is
fixed to 10. The optimized loss in the training procedure is LLog[M] in Table 1 with γ = 0.

0.22

0.24

0.26

0.28

0.30

0.32

0 50 100 150

Iteration

Zero-one Error

10 Models

20 Models

30 Models

40 Models

50 Models

0.73

0.74

0.75

0.76

0.77

0.78

0 50 100 150

Iteration

Average Precision

10 Models

20 Models

30 Models

40 Models

50 Models

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0 50 100 150

Iteration

NDCG@10

10 Models

20 Models

30 Models

40 Models

50 Models

Figure 2: Effect of the number of local models on the performance of LCR, measured by zero-one error (left),
average precision (middle), and NDCG@10 (right). The number of local models vary in {10, 20, 30, 40, 50},
while the rank of each local model is fixed to 5. The optimized loss in the training procedure is LLog[M] in
Table 1 with γ = 0.

0.22

0.24

0.26

0.28

0.30

0.32

0 30 60 90 120

Iteration

Zero-one Error

Log[M]

Log[A]

Exp[M]

Hinge[A]

0.73

0.74

0.75

0.76

0.77

0.78

0 30 60 90 120

Iteration

Average Precision

Log[M]

Log[A]

Exp[M]

Hinge[A]

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0 30 60 90 120

Iteration

NDCG@10

Log[M]

Log[A]

Exp[M]

Hinge[A]

Figure 3: Effect of the optimized loss on the performance of LCR, measured in zero-one error (left), average
precision (middle), and NDCG@10 (right). We tried {LLog[M],LLog[A],LExp[M],LHinge[A]} in Table 1 with γ = 0,
while the rank of each local model and the number of local models is fixed to 5 and 40, respectively.

Effect of the Rank.
Figure 1 compares the performance of LCR when vary-

ing the rank of the local models. The zero-one error (left)
decreases monotonically as expected, since we minimize a
smooth surrogate LLog[M] loss. When the rank gets higher,
the final performance gets better, but it takes more itera-
tions until convergence. In other words, higher ranks achieve
better performance, but take longer to converge. Average
precision and NDCG@10 show a different trend. Unlike the
zero-one error, they overfit at some point, implying that it
is important to use with these evaluation metrics cross val-
idation for determining early stopping. With higher ranks,
however, overfitting seems less of a problem; when the rank
is sufficiently large, it achieves its best performance at the
end. Note that similar results are obtained for other loss
functions and number of local models.

Effect of the Number of Local Models.
Figure 2 compares the performance of LCR when varying

the number of local models. As in Figure 1, the zero-one
error monotonically decreases and converges to an improved
score as the number of local models increases. Average pre-
cision and NDCG@10 tend to overfit, but the tendency to
overfit diminishes as the number of local models increases.
In contrast to Figure 1, however, more local models tend
to result in almost always better performance than less lo-
cal models. This shows that increasing the number of local
models is relatively resistant to overfitting, unlike increas-
ing the decomposition rank (compare the right two panels
of Figure 1 and 2).

Effect of the Optimized Loss Function.
We also compared how LCR performs when changing the

surrogate loss function that is used in the optimization pro-
cedure during the training stage. Figure 3 compares the per-
formance of LCR optimized with different surrogate losses.
Training on log-losses, in general, shows outstanding perfor-
mances, as evaluated by zero-one error. Note that LLog[A]

achieves its best performance earlier than LLog[M], but tends
to overfit more. On the other hand, training by minimizing
LExp[M] overfits much less as evaluated by both average pre-
cision and NDCG. Training by minimizing LHinge[A] was the
quickest to converge among the four and performed espe-
cially well when evaluated in terms of the zero-one error.
A drawback of LHinge[A] is its significant overfitting when
evaluated by average precision and NDCG.

Figure 4 illustrates the behavior of the different loss func-
tions. LLog[M] loss (left-most) assigns almost no penalty
when the estimation is correct, while relatively high penalty
for wrong prediction. This means a model minimizing LLog[M]

loss focuses on pairs which are currently incorrectly esti-
mated, while almost ignoring other pairs. LExp[M] loss (third)
is an even more extreme loss function. On the other hand,
LLog[A] and LHinge[A] losses assign non-zero penalty for cor-
rectly ordered pairs if the degree does not match precisely.

We also tried LExp[A] and LHinge[M] in Table 1, but we ex-
cluded them for the following reasons. LExp[A] loss was too
sensitive to hyper-parameters such as learning rate, mak-
ing it difficult to use in practical settings. LExp[A] is more
extreme than LExp[M], and thus is highly influenced by a
very small portion of training examples. Models trained on
LHinge[M] achieve performance similar to but slightly worse
than models trained on LHinge[A].

Overall Comparison.
As a summary, Figure 5 compares the final performance

when varying the rank and the number of local models. Note
that higher rank generally leads to better performance with
any evaluation metric, and more local models also leads to
better performance with all evaluation metrics. Increasing
the rank and number of local models, however, also increases
computation time.

5.3 Comparison with Other Methods

Experimental Setup.
In this section, we compare the performance of LCR with

other models. Specifically, we compare with standard ma-
trix factorization models (Regularized SVD [2], NMF [25],
Bayesian PMF [37]), with least squares local matrix approxi-
mation (LLORMA [26]), and with the ranked loss minimiza-
tion methods CofiRank [46] and GCR (matrix approxima-
tion minimizing ranked loss in Section 4.2).

Among the different baselines above, LLORMA is notable
since it is a local matrix approximation approach (though
based on least squares minimization), and GCR is notable
since it is a global matrix approximation based on ranked
loss minimization. CofiRank is notable as it is considered a
very strong baseline in recent literature. We implemented all
of the methods above within the PREA toolkit [29], with the
exception of CofiRank that made its code publicly available.

In order to compare with previous published results, we
adopt here the CofiRank weak generalization setup (see Sec-
tion 6 of [46]), predicting the rank of unrated items for users
known at training time. For each user, N randomly chosen
items, with N = 10, 20, 50, are used for training. Another
10 items are set aside for validation set, and all other items
are used for testing. Users with less than N + 20 ratings are
dropped to guarantee at least 10 items can be used for test-
ing. This is a slight modification of the original CofiRank
experimental setup, where no extra validation set was used.
This modification was also proposed in [43, 13].

Parameter Setting.
For LCR, we consider all options including rank, num-

ber of local models, and optimized loss function as hyper-
parameters. That is, we select the best model for each
dataset and for each evaluation metric on the separate vali-
dation set. For CofiRank, we use the same parameter values
(100 dimensions and λ = 10) provided in the original pa-
per [46], and default values provided in the source code for
unstated parameters (such as the maximum number of it-
erations and BMRM parameters). For LLORMA, the rank
of local models was chosen among {5, 10, 15, 20}, and the
number of local models among {10, 20, 30, 40, 50}. We used
the Epanechnikov kernel with width 0.8. All other param-
eters were set to default values in their implementation.
Ranks of other matrix factorization methods were set to
{10, 20, 30, 40, 50} (SVD), {20, 40, 60, 80, 100} (NMF), and
{2, 3, 4, 5} (BPMF). Regularization coefficients and learning
rates were chosen by cross validation.

Result and Discussion.
Table 2 compares LCR with competing approaches in terms

of average precision and NDCG@10.
In terms of average precision, LCR outperforms all other

approaches on MovieLens and Yelp datasets. With Each-

4
2

0

0

4

8

12

16

4 3 2 1 0 -1 -2 -3 -4

△M

△f

Log[M] Loss

4
2

0

0

2

4

6

8

4 3 2 1 0 -1 -2 -3 -4

△M

△f

Log[A] Loss

4
2

0

0

50

100

150

200

4 3 2 1 0 -1 -2 -3 -4

△M

△f

Exp[M] Loss

4
2

0

0

2

4

6

8

4 3 2 1 0 -1 -2 -3 -4

△M

△f

Hinge[A] Loss

Figure 4: Shape of loss functions used in our experiments. ∆M is assumed to be always positive by arranging
two items such that Mu,i > Mu,j. ∆f may be either positive (left-half of each plot) or negative (right-half
of each plot); positive ∆f means the estimation is concordant with the real preference, while negative ∆f
implies the preference order is reversed in our estimation. Thus, as we expect, each loss function assigns
higher penalty for more significant mistakes (in this figure, larger ∆M for negative ∆f).

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

10 20 30 40 50

Ze
ro

-o
n

e
 E

rr
o

r

Number of Local Models

Rank=5

Rank=10

Rank=15

Rank=20

0.74

0.75

0.76

0.77

0.78

10 20 30 40 50

A
ve

ra
ge

 P
re

ci
si

o
n

Number of Local Models

Rank=5

Rank=10

Rank=15

Rank=20

0.69

0.70

0.71

0.72

0.73

10 20 30 40 50

N
D

C
G

@
1

0

Number of Local Models

Rank=5

Rank=10

Rank=15

Rank=20

Figure 5: Performance trend in zero-one error (Left; the lower the better), average precision (Middle; the
higher the better), and NDCG@10 (Right; the higher the better), with various ranks and number of local
models. The presented results are with LLog[A]. Models with other losses show similar trend.

Movie, it lags behind CofiRank in some cases (N = 10, 20),
but is better than others. In terms of NDCG, LCR per-
forms better for all datasets as well, with the exception of
EachMovie with N = 50. We conclude that LCR generally
outperforms other approaches in terms of ranking metrics,
such as average precision and NDCG, which are motivated
by the ranking scenario of modern recommendation systems.

The improvement of LCR is particularly notable for very
sparse datasets such as the Yelp dataset, and when the
amount of available training points (N) is small. The im-
provement of LCR over GCR suggests that the locality as-
sumption is more plausible and that the observed matrix is
not well approximated by a single low-rank matrix. The im-
provement of LCR over LLORMA indicates that in ranking
scenario where evaluation is measured using average pre-
cision or NDCG, it makes more sense to use ranked loss
minimization than least squares.

6. RELATED WORK
Recommendation systems emerged in 1990s in order to

provide personalized services in E-commerce. They have
been popularized by the very successful Netflix competition3

held between 2006 and 2009, and since then many algorithms
were proposed for predicting ratings and constructing rec-
ommendations.

3http://www.netflixprize.com/

Collaborative filtering (CF) is one specific approach to
recommendation systems that does not use any information
about users or items beyond the rating information. Early
CF algorithms included memory based approaches that pre-
dict the rating of items based on the similarity between
users [3, 19] or items [38] and model-based approaches that
build a rating prediction model from the training data. Pro-
posed model-based approaches include incomplete SVD [2],
non-negative matrix factorization [25], Bayesian extensions [37,
36], and maximum margin versions [35]. Lee et al. [28] con-
ducted a comparative study with a number of state-of-the-
art and traditional recommendation algorithms using the
PREA toolkit [29].

In the early 2000s, machine learning techniques were de-
veloped specifically for ranking problems (see for instance [20]).
While early approaches focused on minimizing the pairwise
zero-one loss, more recent approaches were developed to
learn objectives that better follow metrics like NDCG or
average precision [46, 9], which are more in line with real
applications like product recommendation. Recent exam-
ples include [1, 43], which proposed collaborative ranking al-
gorithms to approximately optimize NDCG directly; Eigen-
Rank [30], which optimizes a preference function using Kendall’s
Tau rank correlation. Additional examples are [17, 32, 45,
13, 39, 6, 41, 34].

The idea of collaborative ranking was developed and much
more widely-used for web search and label ranking. Mini-

Metric Average Precision NDCG@10
Data \ Method N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

M
o
v
ie

L
e
n
s

CofiRank 0.6632± 0.0020 0.6825± 0.0034 0.6915± 0.0021 0.6502± 0.0021 0.6629± 0.0040 0.6912± 0.0009
RegSVD 0.7204± 0.0021 0.7321± 0.0047 0.7501± 0.0045 0.6425± 0.0073 0.6510± 0.0066 0.6778± 0.0072
NMF 0.7107± 0.0017 0.7234± 0.0041 0.7328± 0.0052 0.6285± 0.0069 0.6336± 0.0097 0.6471± 0.0064
BPMF 0.6376± 0.0115 0.6517± 0.6517 0.6915± 0.0064 0.5636± 0.0119 0.5513± 0.0184 0.5956± 0.0035
LLORMA 0.7341± 0.0016 0.7424± 0.0015 0.7490± 0.0053 0.6712± 0.0027 0.6682± 0.0061 0.6746± 0.0063
GCR 0.7209± 0.0011 0.7356± 0.0010 0.7534± 0.0021 0.6990± 0.0011 0.6908± 0.0050 0.6932± 0.0043
LCR 0.7406± 0.0019 0.7503± 0.0022 0.7626± 0.0017 0.7152± 0.0056 0.7022± 0.0049 0.7039± 0.0038

E
a
ch

M
o
v
ie

CofiRank 0.7491± 0.0056 0.7476± 0.0054 0.7231± 0.0033 0.6635± 0.0058 0.6985± 0.0031 0.7158± 0.0038
RegSVD 0.6979± 0.0011 0.7159± 0.0009 0.7307± 0.0020 0.6632± 0.0009 0.6784± 0.0015 0.6981± 0.0012
NMF 0.6904± 0.0011 0.6895± 0.0002 0.6769± 0.0015 0.6555± 0.0014 0.6542± 0.0007 0.6385± 0.0022
BPMF 0.6678± 0.0143 0.7024± 0.0054 0.7172± 0.0012 0.6261± 0.0170 0.6615± 0.0053 0.6742± 0.0007
LLORMA 0.7151± 0.0040 0.7116± 0.0032 0.7258± 0.0020 0.6820± 0.0033 0.6778± 0.0035 0.6863± 0.0028
GCR 0.7088± 0.0006 0.7106± 0.0010 0.6958± 0.0006 0.6998± 0.0008 0.6979± 0.0010 0.6779± 0.0012
LCR 0.7307± 0.0010 0.7372± 0.0018 0.7330± 0.0045 0.7166± 0.0017 0.7201± 0.0010 0.6988± 0.0046

Y
e
lp

CofiRank 0.7246± 0.0018 0.7273± 0.0020 0.7235± 0.0035 0.6997± 0.0026 0.6842± 0.0029 0.6680± 0.0028
RegSVD 0.7799± 0.0013 0.7829± 0.0010 0.7774± 0.0034 0.7021± 0.0019 0.6953± 0.0021 0.6823± 0.0035
NMF 0.7757± 0.0026 0.7799± 0.0012 0.7750± 0.0031 0.6926± 0.0032 0.6871± 0.0037 0.6705± 0.0051
BPMF 0.7063± 0.0041 0.7035± 0.0020 0.7035± 0.0061 0.6191± 0.0022 0.5983± 0.0032 0.5838± 0.0029
LLORMA 0.7844± 0.0011 0.7882± 0.0012 0.7822± 0.0024 0.7065± 0.0023 0.7019± 0.0023 0.6842± 0.0039
GCR 0.7754± 0.0012 0.7797± 0.0034 0.7428± 0.0047 0.7465± 0.0023 0.7332± 0.0026 0.6582± 0.0072
LCR 0.7903± 0.0021 0.7901± 0.0040 0.7791± 0.0043 0.7575± 0.0024 0.7425± 0.0018 0.7212± 0.0051

Table 2: Test performance in terms of average precision and NDCG@10. Higher values mean better perfor-
mance. Bold faces mean that the method performs statistically significantly better in the setting, at the level
of 95% confidence level.

mizing pair-wise ranking loss was proposed in Ranking SVM [18],
RankBoost [14], RankNet [4], and FRank [42]. Wsabie [47]
used weighted approximate-rank pairwise loss in label rank-
ing for image annotation problem. Direct list-wise optimiza-
tion over NDCG or average precision was also intensely in-
vestigated, with a few examples being LambdaRank [12],
SVMRANK [51], AdaRank [49], and [5, 50]. Other examples
of collaborative ranking in web search are [15, 8, 7, 31].

7. SUMMARY AND FUTURE WORK
We presented a novel collaborative ranking method based

on the assumption that the rating matrix is globally high-
rank but locally low-rank. The LCR approach generalizes
LLORMA [26] from least squares to ranked loss minimiza-
tion, and it outperforms LLORMA and state-of-the-art ranked
loss minimization methods for collaborative filtering.

It was previously observed that the local low-rank assump-
tion applies to recommendation systems in the context of
least squares rating prediction. In this paper we verify that
the same conclusion holds when performance is evaluated
using a variety of ranked loss functions. Besides provid-
ing improved ranking accuracy, our model also scales up to
large datasets due to our proposed parallel training scheme.
Another computational advantage stems from the fact that
each local model may be restricted to a rank that is lower
than the rank selected for a global model. Indeed, replac-
ing a single rank l matrix factorization with multiple rank l′

(local) matrix factorizations with l′ < l may lead to a win-
win situation in terms of both computational efficiency and
ranking accuracy.

In the proposed LCR algorithm, we randomly chose the
anchor points of the local models. Even though this practice
works well in experiments, it is interesting to investigate
ways of adaptively selecting anchor points or even jointly
selecting anchor points and training the local models.

8. REFERENCES
[1] S. Balakrishnan and S. Chopra. Collaborative ranking.

In Proc. of the ACM International Conference on Web
Search and Data Mining, 2012.

[2] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In Proc. of the International
Conference on Machine Learning, 1998.

[3] J. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of Uncertainty in Artificial
Intelligence, 1998.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proc. of the
International Conference on Machine Learning, 2005.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In Proc. of the International Conference on
Machine Learning, 2007.

[6] S. Chakrabarti, R. Khanna, U. Sawant, and
C. Bhattacharyya. Structured learning for non-smooth
ranking losses. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2008.

[7] Z. Chen and H. Ji. Collaborative ranking: a case
study on entity linking. In Proc. of the Conference on
Empirical Methods in Natural Language Processing,
2011.

[8] B. Chidlovskii, N. S. Glance, and M. A. Grasso.
Collaborative re-ranking of search results. In Proc. of
AAAI-2000 Workshop on AI for Web Search, 2000.

[9] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommendation
tasks. In Proc. of the ACM Conference on
Recommender Systems, 2010.

[10] O. Dekel, C. Manning, and Y. Singer. Log-linear
models for label ranking. Advances in Neural
Information Processing Systems, 2003.

[11] J. Dillon, Y. Mao, G. Lebanon, and J. Zhang.
Statistical translation, heat kernels, and expected
distances. In Uncertainty in Artificial Intelligence,
pages 93–100. AUAI Press, 2007.

[12] P. Donmez, K. M. Svore, and C. J. Burges. On the
local optimality of lambdarank. In Proc. of
International ACM SIGIR Conference, 2009.

[13] C. Fan, Y. Lan, J. Guo, Z. Lin, and X. Cheng.
Collaborative factorization for recommender systems.
In Proc. of the International ACM SIGIR Conference,
2013.

[14] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969,
2003.

[15] J. Freyne, B. Smyth, M. Coyle, E. Balfe, and
P. Briggs. Further experiments on collaborative
ranking in community-based web search. Artificial
Intelligence Review, 21(3-4):229–252, 2004.

[16] S. Hacker and L. von Ahn. Matchin: eliciting user
preferences with an online game. In Proc. of the
SIGCHI Conference on Human Factors in Computing
Systems, 2009.

[17] E. Harrington. Online ranking/collaborative filtering
using the perceptron algorithm. In Proc. of the
International Conference on Machine Learning, 2003.

[18] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
Advances in Neural Information Processing Systems,
1999.

[19] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proc. of ACM SIGIR
Conference, 1999.

[20] T. Joachims. Optimizing search engines using
clickthrough data. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2002.

[21] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proc. of
the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2008.

[22] N. D. Lawrence and R. Urtasun. Non-linear matrix
factorization with gaussian processes. In Proc. of the
International Conference on Machine Learning, 2009.

[23] G. Lebanon. Learning Riemannian metrics. In Proc. of
the 19th Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2003.

[24] G. Lebanon. Axiomatic geometry of conditional
models. IEEE Transactions on Information Theory,
51(4):1283–1294, 2005.

[25] D. Lee and H. Seung. Algorithms for non-negative
matrix factorization. In Advances in Neural
Information Processing Systems, 2001.

[26] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local
low-rank matrix approximation. In Proc. of the
International Conference on Machine Learning, 2013.

[27] J. Lee, M. Sun, S. Kim, and G. Lebanon. Automatic
feature induction for stagewise collaborative filtering.
In Advances in Neural Information Processing
Systems, 2012.

[28] J. Lee, M. Sun, and G. Lebanon. A comparative study
of collaborative filtering algorithms. ArXiv Report
1205.3193, 2012.

[29] J. Lee, M. Sun, and G. Lebanon. Prea: Personalized
recommendation algorithms toolkit. Journal of
Machine Learning Research, 13:2699–2703, 2012.

[30] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented
approach to collaborative filtering. In Proc. of the
International ACM SIGIR Conference, 2008.

[31] A. Mohan, Z. Chen, and K. Q. Weinberger.
Web-search ranking with initialized gradient boosted
regression trees. Journal of Machine Learning
Research-Proceedings Track, 14:77–89, 2011.

[32] S. Park and D. M. Pennock. Applying collaborative
filtering techniques to movie search for better ranking
and browsing. In Proc. of the ACM SIGKDD
International Conference, 2007.

[33] Y. Park and A. Tuzhilin. The long tail of recommender
systems and how to leverage it. In Proc. of the ACM
Conference on Recommender Systems, 2008.

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In Proc. of the
Conference on Uncertainty in Artificial Intelligence,
2009.

[35] J. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proc. of the International Conference on Machine
Learning, 2005.

[36] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using markov chain monte carlo.
In Proc. of the International Conference on Machine
Learning, 2008.

[37] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In Advances in Neural Information
Processing Systems, 2008.

[38] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proc. of the International Conference
on World Wide Web, 2001.

[39] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. Climf: learning to
maximize reciprocal rank with collaborative
less-is-more filtering. In Proc. of the ACM Conference
on Recommender Systems, 2012.

[40] T. F. Tan and S. Netessine. Is tom cruise threatened?
using netflix prize data to examine the long tail of
electronic commerce. Wharton Business School,
University of Pennsylvania, Philadelphia, 2009.

[41] M. Taylor, J. Guiver, S. Robertson, and T. Minka.
Softrank: optimizing non-smooth rank metrics. In
Proc. of the International Conference on Web Search
and Web Data Mining, 2008.

[42] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. Frank: a ranking method with fidelity loss. In
Proc. of International ACM SIGIR Conference, 2007.

[43] M. Volkovs and R. S. Zemel. Collaborative ranking
with 17 parameters. In Advances in Neural
Information Processing Systems, 2012.

[44] M. P. Wand and M. C. Jones. Kernel Smoothing.
Chapman and Hall/CRC, 1995.

[45] J. Wang, S. Robertson, A. P. de Vries, and M. J.
Reinders. Probabilistic relevance ranking for
collaborative filtering. Information Retrieval,
11(6):477–497, 2008.

[46] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola.
Cofi rank: Maximum margin matrix factorization for
collaborative ranking. In Advances in Neural
Information Processing Systems, 2007.

[47] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling
up to large vocabulary image annotation. In Proc. of
the International Joint Conference on Artificial
Intelligence, 2011.

[48] E. Xing, A. Ng, M. Jordan, and S. Russel. Distance
metric learning with applications to clustering with
side information. In Advances in Neural Information
Processing Systems, 2003.

[49] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proc. of International ACM
SIGIR Conference, 2007.

[50] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma.
Directly optimizing evaluation measures in learning to
rank. In Proc. of International ACM SIGIR
Conference, 2008.

[51] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proc. of International ACM SIGIR
Conference, 2007.

