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Abstract—Ranking data, which result from m raters ranking n items, are difficult to visualize due to their discrete algebraic structure,
and the computational difficulties associated with them when n is large. This problem becomes worse when raters provide tied
rankings or not all items are ranked. We develop an approach for the visualization of ranking data for large n which is intuitive, easy to
use, and computationally efficient. The approach overcomes the structural and computational difficulties by utilizing a natural measure
of dissimilarity for raters, and projecting the raters into a low dimensional vector space where they are viewed. The visualization
techniques are demonstrated using voting data, jokes, and movie preferences.

Index Terms—Partial rankings, incomplete rankings, multidimensional scaling.

1 INTRODUCTION

Ranking data arise from m raters ordering, by some mechanism, n
items to express their preferences for the items. The data can arise in
many ways such as directly ranking items, by voting for a subset, or
by rating items on a subjective measurement scale. A ranking can be
complete, which means all n items are ranked, or incomplete, which
means some items are not ranked. A ranking, whether it is complete
or incomplete, can be with-ties or without-ties; it is with-ties if some
of the ranked items are not clearly preferred to others. Raters are of-
ten people but can also be computer programs; one example is search
engines that provide a partial ordering of web sites.

For example, suppose m members of a professional society vote
for the top k of n candidates for the society council, where k < n, and
supply ranks of 1 to k for their votes. Each rater establishes an ordering
on all items in which there are n− k ties for last place. As a result, the
rankings are complete and with-ties. If n = k then the rankings are
complete and without-ties. If a rater can add names to the list, not all
raters have the same write-in process, and the items are the original
list plus write-ins, then the rankings are incomplete and with-ties.

A very common mechanism for rating is to have raters provide their
rating of an item by using a subjective rating scale, say, of 1 to 10. Fre-
quently, the numeric scores reported by different raters are not com-
parable since they interpret the subjective scale in very different ways.
For example, a rating of 10 issued by one person for a highly desir-
able item may correspond to a score of 8 for a second individual who
thinks of 10 as perfect and believes nothing is perfect. In other words,
the scale has little metric content and provides just an ordering; in this
case, the result is ranking data, typically with ties.

Effective visualization of ranking data can reveal important statisti-
cal properties of the population of raters, of the items, and of an item-
rater interaction. For example, graphs may reveal that some products
are generally more popular than others, that high preference of one
product by a customer entails low preference of another product, or
that there are multiple clusters of rankings representing several dis-
tinct types of customers.

The visualization of ranking data differs fundamentally from visual-
izing numeric data. Rankings — whether complete or incomplete, and
whether with ties or not — are discrete objects, rather than numeric
vectors.

• Paul Kidwell is with the Department of Statistics, Purdue University,

E-mail: kidwell@purdue.edu.

• Guy Lebanon is with the College of Computing, Georgia Institute of

Technology, Atlanta GA. Email: lebanon@cc.gatech.edu.

• William S. Cleveland is with the Department of Statistics and Computer

Science, Purdue University, E-mail: wsc@purdue.edu.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online

19 October 2008; mailed on 13 October 2008.

For information on obtaining reprints of this article, please send

e-mailto:tvcg@computer.org.

In this paper we develop an intuitive, easy to use, and computa-
tionally efficient framework for the visualization of ranking data. The
framework starts by considering incomplete or tied rankings as sets
of permutations representing full ordering that are consistent with the
ranking data. Based on the Kendall’s tau distance on permutations, we
define a dissimilarity score on incomplete and tied rankings which cor-
responds to the expected or average distance between the underlying
permutations. Finally, the dissimilarity score is used in conjunction
with multidimensional scaling to project the data into a low dimen-
sional continuous vector space for easy visualization.

In the next section we provide a detailed description of total, tied,
complete, and incomplete rankings as sets of permutations. We then
proceed in Section 4 to describe the metric structure on permuta-
tions and the expected distance dissimilarity measure. Section 5 ex-
plores different visualization techniques for ranking data, and Sec-
tion 6 demonstrates these concepts with an experimental study on vot-
ing data and ratings of jokes and movies. We conclude with Sections
7 and 8 which contain a description of related work and a discussion.

2 COMPLETE OR INCOMPLETE AND WITH-TIES OR WITHOUT-
TIES RANKINGS

Rankings can be classified as without-ties or with-ties and as complete
or incomplete. We start by defining complete without-ties rankings
which correspond to permutations and then proceed to discuss with-
ties and incomplete rankings. Most of the definitions and notations
are similar to the ones in the monographs [7, 9, 11, 16] where more
information can be found. We discuss the metric structure of rankings
in Section 4 followed by various visualization techniques.

A complete, without-ties ranking of the items S = {1, . . . ,n} is a
permutation of S which we denote as a bijection π : S → S mapping
items to ranks. Identifying permutations with bijective functions, we

have that the rank of item i is π(i) and the item ranked j is π−1( j).
The set of all permutations over n items is the symmetric group which
we denote by Sn. We will represent a permutation by a sorted list
of the items, most preferred to least, separated by vertical bars i.e.

π−1(1)| · · · |π−1(n); for example, for n = 5 one permutation ranking
item 3 as first and 2 as last is 3|5|1|4|2.

Complete, with-ties rankings are similar to complete without-ties
rankings but they allow some of the items in S to be of tied rank. We
continue to represent such rankings using the vertical bar notation but
now tied items are separated by commas, rather than vertical bars. For
example, 3|1,2|4 implies item 3 is the most preferred, item 4 is the
least preferred, and items 1 and 2 are tied for the middle ranks.

Conceptually we take a tie to be a lack of information with the no-
tion that more information could in principle break the tie. This means
that a permutation with ties can be though of as a set of permutations
where each member of the set is the potential true permutation if we
had the full information. This idea is incorporated in the term full
ranking which is defined as a ranking without-ties. For example the
with-ties ranking 3|1|2,4 corresponds to the following set of permuta-
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tions

3|1|2,4 = {3|1|2|4;3|1|4|2} ⊂S4.

In our notation, each integer or sequence of integers separated by com-
mas is a compartment. In the last example the compartments are 3,
followed by 1, and finally 2,4. Denoting by r the number of compart-
ments and by n j the size of compartment j the size of the set of per-
mutations corresponding to a complete with-ties ranking is ∏r

j=1 n j!.

Popular types of complete with-ties rankings include top-k rank-
ings, which are often encountered in polls or elections and in the
ranked list of web-pages returned by search engines as a response to
a query. Another popular complete with-ties ranking type is an un-
ordered list of the top k items representing more preferred and less
preferred items, for example, 3,5,7|2,4,6.

When the number of items, n, is very large, rankings are often in-
complete indicating that some items are missing. Our notional con-
ventions continue in a similar fashion for incomplete rankings. For
example, let n = 20 then 5|8|2 is an incomplete without-ties ranking
and 5|2,8 is an incomplete with-ties ranking.

Incomplete rankings, with or without ties, may also be identified
as sets of permutations that are consistent with it. For example, the
incomplete ranking 4|2 with n = 4 corresponds to 4|2| • |•, 4| • |2|•,
4| • | • |2, •|4|2|•, •|4| • |2, and •| • |4|2, where each • symbol denotes
a possible placement of the missing items 1,3:

4|2 = {4|2|1|3;4|2|3|1;4|1|2|3;4|3|2|1;4|1|3|2;4|3|1|2;1|4|2|3;

3|4|2|1;1|4|3|2;3|4|1|2;1|3|4|2;3|1|4|2} ⊂S4.

3 RANKING DATASETS AND THEIR VISUALIZATION

A ranking dataset D consists of a list of rankings over a common set
of items {1, . . . ,n}. The rankings can be either without-ties or with-
ties and either complete or incomplete. Some ranked datasets contain
rankings that are all of the same type e.g.,

D = {3|1|2,4;1|3|2,4;1|2|3,4;1|4|2,3}

while others are more heterogeneous, for example

D = {3|4;1|3|2,4;1|2|3|4; 1|3,4}.

Since rankings are identified as sets of permutations consistent with it
(see Section 2), a ranking dataset corresponds to a set of subsets of the
symmetric group D = {A1, . . . ,Am}, Ai ⊂Sn.

The visualization of D is complicated for the following reasons.
Its elements are not vectors which prevents the use of standard vector
space visualization techniques. It is not clear how to relate one ranking
to another, in particular if they are not of the same type. For example
2|1|3,4 and 3|4 correspond to two sets of permutations Ai,A j ⊂ Sn

which are of different sizes and are neither disjoint nor contained in
each other. Finally, if the number of items n is large (as is often
the case), the number of permutations becomes overwhelming which
raises substantial visualization and computational difficulties.

We address these difficulties by developing a natural dissimilarity
measure between rankings which is then used by multidimensional
scaling to embed the rankings in a low dimensional vector space.
When viewed as points in a low dimensional vector space, the rankings
may be effectively visualized and interpreted.

In Section 4 we develop the dissimilarity measure for both com-
plete and incomplete and with-ties and without-tied. In Section 5 we
describe various visualization techniques based on the developed dis-
similarity measure. These techniques are then demonstrated in Sec-
tion 6 on three ranking datasets.

4 DISTANCES AND DISSIMILARITIES ON RANKINGS

Kendall’s tau T (π,σ) [15] is the most popular choice of distance be-
tween permutations and the one we focus on in this paper. It can be
interpreted as the number of pairs of items for which π and σ have
opposing orderings (called disconcordant pairs) or the minimum num-
ber of transpositions of adjacent items needed to bring π to σ . For

1|2|4|3

1|4|2|3

1|2|3|4

1|4|3|2

4|3|2|1

3|4|2|1

3|4|1|2

3|2|4|1

3|2|1|4

3|1|2|4

3|1|4|2

2|4|3|1

2|4|1|3

1|3|2|4

1|3|4|2

4|3|1|2

4|2|3|1

4|2|1|3

4|1|2|3

4|1|3|2

2|3|4|1

2|3|1|4

2|1|4|3

2|1|3|4

Fig. 1. Permutation polytope for 4 objects represented in 3D space.

example, T (π,σ) = 1 for π = 1|2|3, σ = 2|1|3 since transposing the
adjacent items 1 and 2 in π results in σ .

A useful visualization tool for the metric structure (S4,T ) is the
permutation polytope [18] whose vertices correspond to permutations
and whose edges correspond to adjacent transposition of items. In
other words, two vertices that are connected by an edge correspond to
Kendall’s tau distance 1 and more generally the distance between two
permutations is the length of the shortest path on the polytope between
the two corresponding vertices. The permutation polytope for 4 items

is displayed in Figure 1 where it is embedded in R
3. When the number

of items n is larger than 4 the polytope cannot be embedded in R
3 and

using it for visualization purposes [18, 2] is rather limited.
A natural way to extend T to rankings that are incomplete or with-

ties is to consider the expected distance between the sets, A,B, of full
and complete rankings which are consistent with the two observed
rankings. The expectation is calculated with respect to a uniform dis-
tribution over the sets of consistent rankings i.e.,

T ∗(A ;B) =
1

|A| · |B| ∑
π∈A

∑
σ∈B

T (π,σ). (1)

We use a semicolon in T ∗(· ; ·) instead of a comma to avoid confusion
with the commas in the with-ties rankings.

For any but the smallest A,B a direct calculation of (1) would in-
volve an intractable summation. However, in some cases it is possible
to efficiently compute (1), even for large n and large sets A,B. The effi-
cient calculation of (1), which we present below, is based on the com-
binatorial properties of the Kendall’s tau distance. These properties
were first noted by Alvo and Cabilio, a more complete description is
available in [16] and [1]. An alternative extension of T to incomplete
and tied rankings may be obtained based on the Hausdorff distance
construction. See [7] for more details.

In the case where A,B represent two incomplete full rankings σ1,σ2

each expressing preference over k1,k2 items respectively,

T ∗(A ; B) =
n(n−1)

4
+

n−1

∑
i

∑
l>i

a1(i, l)a2(i, l) (2)

where

a(i, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2I(σ(i)−σ(l))−1 if i and l are ranked

2
σ(i)
k+1 −1 if only i is ranked

1−2
σ(l)
k+1 if only l is ranked

0 otherwise

.
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Intuitively, the terms a1(i, l) and a2(i, l) represent the contribution of
each pair of items with respect to the two observed rankings. The
subscript differentiates between the two observed rankings. The values
correspond to the 4 scenarios of incompleteness: (1) both items were
ranked, (2,3) only 1 item was ranked, and (4) neither item was ranked.

For example, assuming n = 4 we have

T ∗(4|2;3|4|1) = 3+
3

∑
i

∑
l>i

a1(i, l)a2(i, l)

= 3−
1

3
·

1

2
+0 ·1+

1

3
·1+

1

3
·

1

2
+1 ·0+

1

3
·0 =

10

3
.

Note that for two incomplete rankings that do not share any com-
mon objects the expected distance is n(n− 1)/4 which agrees with
the the average of Kendall’s tau over the entire set of permutations
Sn. Each common object adjusts this expectation by accounting for
relationships among both the pairs of observed objects in the stan-
dard way and unobserved objects by considering their possible posi-
tion relative to the observed objects. Computationally, using (2) re-
quires O(min(k1,k2)n) where k1 and k2 are the number of observed
rankings in A and B. This constitutes a dramatic improvement over
the overwhelming complexity Ω((n− (k1 +k2))!) required by a direct
calculation of (1).

The computation of T ∗(A ;B) for A,B corresponding to with-ties
rankings can be efficiently computed using a common representation
for all rankings in the class of compatible rankings. Objects consid-
ered to be tied are mapped to a shared position. A permutation is a
mapping, τ , of objects to positions; however, unlike an ordinary per-
mutation which maps each item to a distinct spot, ties are identified
by mapping items to the same spot represented by a common number.
For example, given preferences 3,4|1,2 and 3|1,2|4 the correspond-
ing mappings are τ1 = (2,2,1,1) and τ2 = (2,2,1,3). The repetition
of numbers indicate that multiple objects are tied, e.g. in τ2 a 2-way tie
exists for second place. The resulting formula for a with-ties ranking
π,σ corresponding to the A,B is

T ∗(A ;B) =
n−1

∑
i=1

∑
l>i

φ((τ1(i)− τ1(l))(τ2(i)− τ2(l))) (3)

where φ(x) = 0 for x > 0, φ(0) = 1
2 , and φ(x) = 1 for x < 0. For

example using the rankings in the example above we obtain

T ∗(3,4|1,2;3|1,2|4) = φ(0 ·0)+φ(1 ·1)+ · · ·+φ(0 · (−2))

= 0.5+0+1+0+1+0.5 = 3

Computationally, (3) requires O(n2) complexity which is substan-

tially better than the O(∏r NA
r !+∏r NB

r !) required by a direct calcula-

tion of (1). Here, NA
r ,NB represent the number of tied items at different

ranks in the with-ties rankings corresponding to A,B (see Section 2).

5 VISUALIZATION TECHNIQUES

The expected Kendall’s tau distance T ∗ between two partial or incom-
plete rankings enables the embedding of ranking data in a Euclidean

space R
2 or R

3 through multidimensional scaling. We start by de-
scribing briefly multidimensional scaling and then proceed to describe
a variety of visualization techniques operating on the embedded data.

5.1 Multi-Dimensional Scaling

In our context of ranking data, multi-dimensional scaling (MDS) finds
an embedding of ranking data {A1, . . . ,Am} in Euclidean space i.e.,

Ai �→ zi with {z1, . . . ,zn} ⊂ R
2, such that the distortion introduced by

the embedding

R(z1, . . . ,zm) = ∑
i, j

(T ∗(Ai,A j)−‖zi− z j‖)
2

is minimized. In other words, the coordinates z1, . . . ,zm in R
2 corre-

sponding to the incomplete or with-ties ranking data are selected in a

way that minimizes the total distortion of distances

(z1, . . . ,zm) = argmin
z′1,...,z

′
m

R(z′1, . . . ,z
′
m).

Note that multidimensional scaling is well-defined even if the function
T ∗ is an expected distance rather than a formal distance function. In
this case multi-dimensional scaling is a more appropriate choice than
PCA since the distances are not formal. More details on multidimen-
sional scaling may be found in [6].

To illustrate the application of multidimensional scaling to ranking
data we demonstrate an MDS embedding of synthetic data in Figure 2.
In the first case (left panel) we construct an embedding of the following
fully ranking data

{1|2|3|4|5|6, ; . . . ;1|2|6|5|4|3}∪{6|5|1|2|3|4; . . . ;6|5|4|3|2|1}.

The embedded points correspond nicely to two clusters in the top and
bottom parts of the two dimensional plane. The first cluster corre-
sponds to the second set of rankings consisting of all permutations
ranking items 6 and 5 in the top two positions. The second cluster cor-
responds to the first set of rankings consisting of permutations ranking
items 1 and 2 in the top two positions.

In the second case (Figure 2, right) we construct an embedding of
the incomplete ranking data

{1|2|3;1|2|4;1|2|5;1|2|6}∪{6|5|1;6|5|2;6|5|3;6|5|4}.

As expected, we obtain two clusters in the top and bottom of the two
dimensional plane corresponding to the two sets of ranking. The first
cluster corresponds to rankings with items 1 and 2 occupying the top
two ranks and the second cluster corresponds to rankings with items 6
and 5 occupying the top two ranks.

In both cases the points with largest and smallest distance with re-
spect to T ∗(Ai,A j) are also the most and least distant respectively in
the the embedded space ‖zi− z j‖2. For example, in Figure 2 (right)
the rankings Ai = 6|5|1,A j = 1|2|6 are most distant in T ∗ and the the
corresponding Euclidean distance ‖zi−z j‖2 is maximal. We thus con-
clude that while the precise spatial relationship between the ranking
data is somewhat distorted (perfect embedding is impossible in this
case), the major spatial qualities of the ranking data are mostly pre-
served by the MDS embedding.

5.2 Heat Maps

Plotting the embedded ranking data D = {A1, . . . ,Am} using a scatter
plot as in Figure 2 is ineffective when the number of rankings m is
large. Instead, assuming that the embedded rankings are drawn from a
population z1, . . . ,zm ∼ p, we use a non-parametric density estimation
technique [20]

p̂(z) =
1

m

m

∑
i=1

Kh(z,zi), Kh(x,y) = h−1 exp(−h−1‖x− y‖2) (4)

to estimate the underlying density p on R
2. We then proceed to plot the

estimated density p̂ by translating its numeric values to colors which
are drawn as an image. For large datasets the resulting plot is less
cluttered than a scatter plot and demonstrates nicely the distribution of
points through the embedded two dimensional space.

We examine several ways of translating the numeric values of p̂(z)
to colors based on the power transform, which is a continuous family
of monotonic transformations parameterized by λ > 0

y �→ y(λ ) =

{
(yλ −1)/λ λ �= 0

logy λ = 0
. (5)

Thus, instead of mapping the values of p̂(z) to a colormap (say
grayscale or red-blue) in a linear way we use the numeric values

p̂(λ )(z) which amounts to a power transformation of the estimated
density p̂. Specifically, varying 0 < λ < 1 emphasizes differences in
regions of low density over regions in high density (see Figure 3). In
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Fig. 2. Synthetic full rankings (left) and incomplete rankings (right) embedded in 2D using multidimensional scaling.

Fig. 3. Power transform for λ ranging from 0 (bottom) to 1 (top).

practice both λ and h can be regarded as tuning parameters for the vi-
sualization, a user iteratively interacting can select the parameter val-
ues yielding the most informative displays. As we see in the next sec-
tion, this is an important component of the visualization system since

in some cases visualizing p̂ (or p̂(λ ) for λ = 1) focuses exclusively on
a small region of very high density.

5.3 Subset Selection

In some situations the visualized density p̂ should be computed based
on only a subset of the data D ′ ⊂ D . For example, it may be desir-
able to focus only on raters satisfying a certain demographic criterion
such as an age group or geographic location. In other cases it may be
desirable to consider only rankings satisfying some constraints such
as having a certain item in the top 10. These restrictions enable the
visualization system to focus on a subset of the rankings that are of
particular interest and that would otherwise be overwhelmed by the
remaining data.

For large datasets, it is sometimes easier to visualize semantically
meaningful parts of it. For example, the dataset D can be divided to
l groups corresponding to the demographics of the raters D1, . . . ,Dl .
Due to the smaller size of each set and its semantic coherence the sets
can be visualized separately at first producing a collection of visual
cues. Then, the entire dataset can be visualized in order to relate the
rankings found in the different subsets to each other.

5.4 Retention and Censoring

Two alternatives to subset selection that enable a different form of di-
rected visualization are retention and censoring. These techniques vi-

sualize the data by conducting MDS and density estimation based on
the original data D , equipped with a modified geometry that empha-
sizes certain desired aspects.

It is easy to explain retention and censoring by transforming the
original ranking data D = {A1, . . . ,Am} to a different but related set
D ′ = {A′1, . . . ,A

′
m} of rankings that are then input to the MDS and den-

sity estimation procedures. Denoting the transformation by g(Ai) = A′i
we have that visualizing the transformed data using MDS is equivalent
to MDS on the original data, but under a different distance measure or
geometry

T ∗g (Ai,A j) = T ∗(g(Ai),g(A j)). (6)

Different transformations g correspond to different geometric struc-
tures T ∗g emphasizing some aspects of the data over others. The two

dimensional embedding obtained by MDS using T ∗g would therefore
depend highly on the nature of g thus reflecting the desired emphasis.

In retention, a certain set of items S is selected and all the rankings
Ai are mapped to A′i = g(Ai) corresponding to the preference relation
in Ai restricted to S. For example, for S = {1,3} we have

D = {3|1|2,4;1|3|2,4;1|2|3,4;1|4|2,3} �→D
′ = {3|1;1|3;1|3;1|3}.

Visualizing the embedded coordinates of D through MDS using T ∗g
emphasizes the importance of the ranking of items in S. This is often
useful if there is a large number of items and it is desirable to concen-
trate on different subsets of items in different stages. For example, in
the case of movie rankings it may be useful to first visualize rankings
involving only a certain genre such as comedy followed by ranking of
another genre such as drama.

Censoring transforms the ranking data Ai �→ g(Ai) to a consistent
but more incomplete or with-ties version of it. For example, removing
from the data all information not pertaining to the top two items we
obtain

D = {3|1|2,4;1|3|2,4;1|2|3,4;1|4|2,3} �→D
′ = {3|1;1|3;1|2;1|4}.

In contrast to retention which focuses on specific items, censoring
focuses on specific ranks. This mechanism can be used to visualize
the distribution of top k or bottom k rankings. If k = 1 we obtain a
visualization of the population of the most preferred or least preferred
item. More interestingly, selecting a small k > 1 we obtain a visual-
ization of the ranking data restricted to the few most or least preferred
items. Returning to the movie example, this approach could be used
to visualize the viewers perspectives regarding the top three films of
all time. Another example is web-search where censoring for the top
k items emphasizes the distribution of websites relevant to a query.

The visualization system allows retention and censoring to be used
in tandem thereby keeping only those orderings over a subset of ob-
jects, and then looking exclusively at the favorites among this group,
e.g. Figure 4. In the case of the movie example, this would produce
for example a visualization of the three best comedy films of all time.
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5.5 Clustering

The heat map density plot of the original dataset or a transformed one
(via subset selection, retention, or censoring) provides a nice visual
summary of the spatial features of the population p. Statistical analysis
can aid further the visualization by automatically identifying clusters
corresponding to regions of high density.

Standard clustering techniques such as k-means produce a partition
of the data to k groups of spatially coherent clusters. Applying it to the
ranking data provides an automatic partition of the data where distinct
clusters correspond to a part of the population having similar prefer-
ence relations. In other words, clustering stratifies the data to k dif-
ferent types of raters. For example in the case of voting data the rater
types could correspond to different demographic such as geographic
location, age, gender, and race.

In addition to providing an automatic division of the rankings to
spatially coherent types, clustering enables the visualization system to
add meaningful labels to the heat map density plot without the risk
of adding unnecessary clutter. The labeling produced by the system
correspond to certain statistics of interest such as the average rank of
an item or the probability of an item appearing within the top l ranks.
The labels are computed per cluster and are displayed in a point that
visually identifies the cluster such as the cluster centroid.

5.6 Point Labeling and Zoom

An important feature in most visualization systems is the user’s ability
to interact with it. We already mentioned a few interactive features
such as the translation of numeric value to color, subset selection, and
censoring and retention. We describe next two additional highly inter-
active features - point labeling and zoom.

Point labeling refers to the situation in which a user is interested in
locating the point on the two dimensional heat map plane correspond-
ing to a certain ranking of interest. For example, the user may be inter-
ested in the embedded two dimensional coordinates of a certain top 10
ranking. Unfortunately, MDS applied to the ranking dataset D does
not construct two dimensional coordinates for rankings not appearing
in the dataset D .

To resolve this difficulty, we augment the ranking dataset D with
additional representative rankings called anchor points. Since the an-
chor points are added to D before the MDS is applied, they receive
two dimensional coordinates as well. The list of anchor points is then
made available to the user and may be marked on the heat map in order
to aid its spatial interpretation.

Zooming into a certain region of the heat map can be done in two
different ways. The first is by subset selection (Section 5.3 which
focuses on a subset of the original data corresponding to rankings that
fulfill a certain criterion. The second is by specifying a certain region
of interest in the two dimensional map and redrawing the heat-map in
that region over the entire figure.

The first zoom technique is more appropriate when the user knows
in advance what type of rankings are relevant. The second zoom tech-
nique is more appropriate when the user unexpectedly observes an in-
teresting spatial feature in the heat map such as a cluster and wishes to
examine it in more detail.

6 EXPERIMENTS

In this section we employ the framework described in the preceding
section to analyze three ranked datasets: Jester, APA, and MovieLens.

6.1 Jester Dataset

The Jester dataset contains incomplete rankings of 100 jokes by 73,421
users during April 1999 and May 2003 [13]. Each user provided a
numeric scores in the range from −10.00 to 10.00 for at least 20 out
of the 100 jokes. Since the rating scale is nearly continuous there are
very few ties and we can essentially consider this dataset as a set of
incomplete full rankings. In the experiments below we visualize a set
of incomplete ratings D obtained from 5,000 randomly selected users.

The heat map representing the estimate p̂ obtained from D is dis-
played in Figure 4 using the power transform with λ = 1,1/3,0 (left,
center, and right, respectively). The left panel corresponding to λ = 1

50 29 62 27 54 35 36

Joke Old Scott Engi Clinton Celeb Nat Poles

Top 1 .037 .038 .026 .032 .031 .027 .025

Top 5 .038 .034 .029 .031 .029 .029 .028

Fig. 8. The probabilities of a joke ranking in the top k. First censoring
is used to select the top k jokes, then probabilities are calculated given
the censoring. The jokes listed correspond to those with the highest
probability of appearing in the top 5. Joke 29 has the highest probability
of being ranked first, but is not frequently ranked between 2 and 5.

shows a massive cluster at the center of the two dimensional embed-
ding space. Reducing λ to 1/3 (middle) and 0 (right) reveals addi-
tional smaller clusters that are invisible without the use of a nonlinear
transform. Note that λ = 1/3 reveals 6 additional smaller clusters
while λ = 0 reveals additional sub-clusters within these six clusters.

We proceed next to illustrate the use of the censoring technique
described in Section 5. Figure 5 displays the heat map obtained after
censoring the incomplete rankings to top 5 (left) and top 3 (middle).
Figure 5 (right) contains a zoomed version of bottom right cluster of
the middle panel. The resulting visualization emphasizes differences
between rankings in the top 5 or 3 items and ignores differences in
lower ranked items. Such emphasis of differences among top ranked
items is important in several applications. For example, in web search
a mistakenly placed entry in the topmost rank could prove much more
severe than in the bottom rank. Similarly, assuming that the jokes
ranked at the bottom are of poor quality, it may make sense to consider
visualizing the top k jokes in order to visualize the high quality jokes.

The embedded points were clustered using k-means and for each
cluster we computed basic statistics that are displayed near the clus-
ter’s centroid. The displayed statistics in Figure 5 correspond to a list
of prominent items accompanied by the average rank of items (within
the cluster) in parenthesis. The average ranks represent the overall
preference of the item for rankings belonging to different clusters. Be-
low the items and their average ranks we display the size of the cluster
in terms of the number of rankings it contains.

For example, in clusters in the top of the left panel of Figure 5, we
can observe that joke number 50 (usually ranked 1 or 2) is usually pre-
ferred to joke number 29. On the other hand, in clusters at the bottom
left of the panel joke 29 (usually ranked 1 or 2) is preferred to joke
50. The highly popular jokes which are used to label the clusters cor-
respond with those identified by examining tabulations of preferences
frequencies in Figure 8. We see that while joke 50 seems to be most
frequently ranked in the top 5, joke 29 is more frequently listed as
the top joke. The global statistics that indicates a close similarity be-
tween the preferences of jokes 29 and 50 is replaced by substantially
different and finer local preferences. For example, some clusters in
in the middle of the left panel have a relatively low average rank for
joke 50 which is globally ranked high (Figure 8). The middle panel
displays the heatmap corresponding to top 3 censoring and reveals a
much coarser clusterings with 7 clusters, one of which is dominating
in size the remaining clusters. The right panel contains a zoomed view
of the bottom right cluster in the middle panel. The cluster which
seemed homogenous is split into sub-clusters which all have joke 50
within the top 3 but they differ with respect to the remaining items.

6.2 APA voting

The APA dataset contains 15,449 votes for the presidency of the Amer-
ican Psychological Association in 1980. Each ballot contained a rank-
ing of the top 5 candidates, except in some cases where ties were ob-
served. The dataset has been extensively analyzed in [9] and other
sources which found that the voting population was divided into 3 dis-
tinct blocs.

We visualize the rankings by displaying in Figure 6 (left) the heat-
map corresponding to 4,000 randomly selected ballots from the data.
The middle panel zooms in on the bottom cluster which appears to
be two clusters close to each other. The right panel zooms in the top
cluster which appear to be somewhat bean-shaped.
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Fig. 4. The heat map corresponding to p̂ obtained from the Jester data. The three panels represent the use of the power transform with values
λ = 1,1/3,0 (left, center, and right, respectively). Decreasing the value of λ emphasizes differences in regions of low density as opposed to the
central region of high density.
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Fig. 5. Heatmap corresponding to the Jester data with censoring. Left panel corresponds to top 5, middle panel corresponds to top 3, and right
panel corresponds to a zoomed version of the middle panel. Cluster labels indicate the highest ranked jokes followed by their mean ranking below
which the cluster size is displayed.
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4(2.73),5(2.83)

2(1.42),4(3.90)

3(2.09),1(3.05)

1431

1023

1546

4(1.10),1(5.61)

5(1.37),4(5.62)

336

304

3(1.22),1(3.48)

1(2.67),3(3.47)

973

715

Fig. 6. The overall picture of the voting distribution shows 3 distinct voting blocs (left). Zooming in on the bottom cluster (middle) reveals two
sub-clusters – one with candidate 4 ranked first and one with candidate 5 ranked first. Zooming in on voters in the top cluster (right) reveals a clear
preference for candidate 3 over 1 in the top region and a preference of candidate 1 over 3 in the bottom region.

5(5.03),7(6.44)

8(6.62),3(7.10)

92

175

1(1.33),7(8.72)

8(6.25),3(6.51)

62

92

Fig. 7. The overall picture (left panel) shows a single large cluster, but inspecting the results of k-means clustering reveals preferences differ from
the left to the right. Zooming in (right panel) on the right half of the cluster produces a separation among the fans of romance films. Fans of dramatic
romance are in the bottom cluster, while fans of lighter romance fall in the top cluster.
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The visualization seems to indicate the voters corresponding to the
bottom cluster are indifferent to candidates 4 and 5 (average ranks are
in the middle ranks of 2 and 3). However, zooming into this cluster
(middle panel) reveals that there are actually two sub-clusters within it
with the top one corresponding to candidate 5 typically selected as the
topmost choice and the second corresponding to candidate 4 typically
selected as the topmost choice. Similarly, the right panel reveals that
although both items 3 and 1 receive middle ranks in the top cluster, the
top of that cluster correspond to voters that favor candidate 3 while the
bottom correspond to voters than prefer candidate 1.

6.3 Movie ratings

The MovieLens web site collected data over the seven-month period
beginning September 19th, 1997 and ending April 22nd, 1998. The
data set contains a total of 100,000 ratings (1-5) from 943 users on
1682 movies. Each movie was categorized by genre although a single
film could fall into multiple genre. We examined the user’s movie
preferences by choosing subset of 12 movies including action, drama,
romance, and children’s films. Our sample included 267 users rating
at least two of the 12 movies.

The movie viewing population initially appears to be a single large
cluster in the left panel of Figure 7. A closer look identifies a di-
chotomy within the single large cluster where preferences vary from
the left to the right. The left half of the cluster appears to appreci-
ate action films, Highlander (5) and Die Hard II (7), while the right
half leans towards romance, The Piano (8) and Gone With the Wind
(3). A closer look at the right side of the cluster (left panel) produces
two clusters within the romance genre. The bottom cluster contains
dramatic romances, 8 and 3, while the top cluster has films of the ro-
mance genre not categorized as dramatic, Sleepless in Seattle (1) and
Dirty Dancing (4).

7 RELATED WORK

Visualizing ranking data has been an ongoing challenge that has re-
ceived attention from a number of communities ranging from pioneer-
ing efforts by Spearman motivated in psychology to more recent ef-
forts by the computer science and statistics communities. The ubiq-
uity of ranking data and the vast number of ranking forms have led to
a variety of visualization techniques.

A popular visual representation of the ranking space is the permu-
tation polytope as coined by Yemelichev, Kovalev, and Krasov [21]. It
is defined to be the convex hull of n! points in R

n where each vertex
represents a complete ordering of the n items. A vehicle for the visual-
ization of probability distributions over the polytope was developed by
Cohen and Mallows [5] and extended by Thompson [18] and Baggerly
[2]. This method replaces each vertex of the polytope by a sphere with
diameter proportional to the probability of the corresponding permu-
tation. The polytope approach is extremely effective for preserving
relationships between objects when the number of items are small but
is ineffective for large n.

Marginal statistics and pairs have been established as an effective
approach to overcoming the problem of large n by [8], [10], and [14].
Basic marginal plots can be built by constructing a matrix of object
by rank filled with spheres whose radii are proportional to ranking
probability. Many relationships can be identified by expanding from
pairs to triples and larger as in [17]. Parallel coordinate axis plots
developed by Inselberg [14] place objects on the x-axis and rankings
on the y, while simultaneously plotting each ranking as a series. This
has been shown to be effective for identifying relationships among a
small number of raters . More recently, Batty [3] changed the parallel
coordinate method into a ranking clock to view rankings over time.

Projecting polytopes is a method that has been frequently used for
overcoming large n. Gabriel’s [12] bi-plot is similar to principal com-
ponent analysis (PCA) or MDS; the idea is to locate the center of the
polytope and calculate the Euclidean distance between this point and
each ranking. This projection method maximizes the spread of points
in 2D where the points of interest are outlying. Other efforts utiliz-
ing PCA and MDS include Ukkonen’s [19] scatter plots which use an
alternative distance to deal with incomplete rankings.

The structure of rank data and the computational advantages af-
forded by Kendall’s tau has led to its popularity [9], [1]. Alvo and
Cabilio [1] have shown it to be convenient for analyzing rankings in
the face of missing data. Recently, Busse et al. [4] have used this
metric to cluster heterogeneous rank data using top k partial rankings.

Our approach leverages the strengths of previous approaches in the
analysis of ranking data together with visualization. This combination
enables our approach to deal with a variety of real world data structures
including both with-ties and incomplete rankings. The use of kernel
smoothing facilitates the analysis of datasets with a large number of
raters. Kendall’s tau creates computational efficiencies necessary for
distance calculations involving large numbers objects while preserving
the notion of similarity described by the permutation polytope.

8 DISCUSSION

Our visualization framework is based on three main components. First
we express a natural measure of dissimilarity of rater’s rankings using
Kendall’s tau T for complete and without-ties ranking data, and extent
this to incomplete or with-ties rankings by taking expectations. Sec-
ond, we use multidimensional scaling to embed the rankings in two
dimensions in a way that provides a best fit of the 2-D distances to the
actual distances as measured by the expected Kendall’s tau. The third
component is a nonparametric estimate of the density of the projected
rankings, which allows us to visualize the behavior of the raters.

In addition to these three components we examine several visualiza-
tion techniques: heat maps, power transformation, retention and cen-
soring, clustering and labeling, and zoom and subset selection. Using
these techniques, the visualization system is flexible enough to empha-
size desirable aspects of the data while de-emphasizing less desirable
aspects. Furthermore, the visualization system is computationally ef-
ficient due to Alvo and Cabilio’s efficient computation of T ∗.
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