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In a previous note, sufficient statistic was discussed as a data-reduction tool. Here, we explore an another
application of sufficient statistic. Via the Rao-Blackwell theorem, it can be used to improve an estimator
and reach the best unbiased estimator.

Theorem 1 (Rao-Blackwell). Let θ̂ be an estimator, and T a sufficient statistic, both for θ. Then the
estimator θ̂∗(X1, . . . , Xn) = E(θ̂(X1, . . . , Xn)|T (X1, . . . , Xn)) is at least as good as θ in terms of the MSE:

∀θ MSE (θ̂∗) ≤ MSE (θ̂).

Proof. Since Var (X) ≥ 0, we have that E (X2) ≥ E (X)2 and

E ((θ̂ − θ)2|T ) ≥ (E (θ̂ − θ)|T )2 = (E (θ̂|T )− θ)2 = (θ̂∗ − θ)2.

Taking expectation of both sides we have

E ((θ̂∗ − θ)2) ≤ E (E ((θ̂ − θ)2|T )) = E ((θ̂ − θ)2).

It can be shown that the inequality in the above theorem is strict if the two estimators are different θ̂∗ 6= θ̂.
The above procedure for improving an estimator is sometimes called a Rao-Blackwellization procedure. The
Rao-Blackwell theorem may be extended to the multi-parameter case where θ is a vector, and is also correct
when the MSE is replaced with the MAE: E (|θ̂ − θ|).

When we examine the form of the superior estimator θ̂∗, we note that it is a random variable that is a
function of the sufficient statistic T (X1, . . . , Xn) (it depends on the data X1, . . . , Xn only through the value
of T (X1, . . . , Xn)). In other words, if we have an estimator that is not a function of the sufficient statistic
by itself, it can be improved upon by Rao-Blackwellization. We can thus restrict ourselves in our search of
estimators to functions of sufficient statistics.

Example: Recall that for normal data and θ = µ, X̄ is the minimal sufficient statistic. Therefore an
estimator µ̂ that uses the sample median is not going to be as good as some function of X̄ in terms of the
MSE.

Example: Recall that X̄ and S2 are minimal sufficient statistics for (µ, σ2) in normal data. An estimator
σ̂ that uses the range max(X1, . . . , Xn) −min(X1, . . . , Xn) will be dominated by an estimator that uses X̄
and S2 .

The notion of complete statistics sharpen the Rao-Blackwell theorem in a way that enables characterizing
the best estimator among all unbiased estimators.

Definition 1. θ̂ is the uniformly minimum variance unbiased estimator (UMVUE) if it is an unbiased
estimator of θ, and its variance is smaller than any other unbiased estimator (for all values of θ). By the
bias-variance decomposition of the MSE, it is also the best estimator in terms of the MSE among the class
of unbiased estimators.

Definition 2. A sufficient statistic T is complete (w.r.t θ) if

E (g(T (X1 . . . , Xn)) = 0 ∀θ ⇒ P (g(T ) = 0) = 1 ∀θ.
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The above definition is sometimes referred to as a ‘complete sufficient statistic does not admit any
unbiased estimators of 0’ (others than the zero function).

Theorem 2 (Lehmann-Scheffe). An unbiased estimator that is a complete sufficient statistic is the unique
UMVUE.

The Lehmann-Sheffe theorem states that if you find an unbiased estimator that is a function of a complete
sufficient statistic, it is the unique UMVUE. For such estimators, Rao-Blackwellization acts as an identity
operator.

Example: Consider θ̂ = X̄ as an estimator of the parameter θ of a Bernoulli distribution. By the
factorization theorem L(θ) =

∏
θ
P

xi(1−θ)n−
P

xi = g(θ, X̄) it is a sufficient statistic. To show completeness,
note that under the Bernoulli distribution,

∑
Xi is a binomial RV and

E (g(X̄)) =
n∑

i=0

n!
i!(n− i)!

θi(1− θ)n−ig(i/n) = n!(1− θ)n
n∑

i=0

g(i/n)
i!(n− i)!

(
θ

1− θ

)i

is a polynomial in θ/(1 − θ) and for it to be identically zero (for all θ), all its coefficients have to be zero.
This implies that g(X̄) = 0 with probability 1 and therefore X̄ is a complete sufficient statistic. Since it is
also an unbiased estimator of θ, by the Lehmann-Sheffe theoremit is the unique UMVUE for θ.
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