The Rao-Blackwell Theorem and the UMVUE

Guy Lebanon

May 24, 2006

In a previous note, sufficient statistic was discussed as a data-reduction tool. Here, we explore an another application of sufficient statistic. Via the Rao-Blackwell theorem, it can be used to improve an estimator and reach the best unbiased estimator.

Theorem 1 (Rao-Blackwell). Let $\hat{\theta}$ be an estimator, and T a sufficient statistic, both for θ . Then the estimator $\hat{\theta}^*(X_1, \ldots, X_n) = E(\hat{\theta}(X_1, \ldots, X_n) | T(X_1, \ldots, X_n))$ is at least as good as θ in terms of the MSE:

$$\forall \theta \qquad MSE(\hat{\theta}^*) \le MSE(\hat{\theta}).$$

Proof. Since $Var(X) \ge 0$, we have that $E(X^2) \ge E(X)^2$ and

$$\mathsf{E}\left((\hat{\theta}-\theta)^2|T\right) \ge (\mathsf{E}\left(\hat{\theta}-\theta\right)|T)^2 = (\mathsf{E}\left(\hat{\theta}|T\right)-\theta)^2 = (\hat{\theta}^*-\theta)^2.$$

Taking expectation of both sides we have

$$\mathsf{E}\left((\hat{\theta}^* - \theta)^2\right) \le \mathsf{E}\left(\mathsf{E}\left((\hat{\theta} - \theta)^2 | T\right)\right) = \mathsf{E}\left((\hat{\theta} - \theta)^2\right).$$

It can be shown that the inequality in the above theorem is strict if the two estimators are different $\hat{\theta}^* \neq \hat{\theta}$. The above procedure for improving an estimator is sometimes called a Rao-Blackwellization procedure. The Rao-Blackwell theorem may be extended to the multi-parameter case where θ is a vector, and is also correct when the MSE is replaced with the MAE: $\mathsf{E}(|\hat{\theta} - \theta|)$.

When we examine the form of the superior estimator $\hat{\theta}^*$, we note that it is a random variable that is a function of the sufficient statistic $T(X_1, \ldots, X_n)$ (it depends on the data X_1, \ldots, X_n only through the value of $T(X_1, \ldots, X_n)$). In other words, if we have an estimator that is not a function of the sufficient statistic by itself, it can be improved upon by Rao-Blackwellization. We can thus restrict ourselves in our search of estimators to functions of sufficient statistics.

Example: Recall that for normal data and $\theta = \mu$, \bar{X} is the minimal sufficient statistic. Therefore an estimator $\hat{\mu}$ that uses the sample median is not going to be as good as some function of \bar{X} in terms of the MSE.

Example: Recall that \bar{X} and S^2 are minimal sufficient statistics for (μ, σ^2) in normal data. An estimator $\hat{\sigma}$ that uses the range $\max(X_1, \ldots, X_n) - \min(X_1, \ldots, X_n)$ will be dominated by an estimator that uses \bar{X} and S^2 .

The notion of complete statistics sharpen the Rao-Blackwell theorem in a way that enables characterizing the best estimator among all unbiased estimators.

Definition 1. θ is the uniformly minimum variance unbiased estimator (UMVUE) if it is an unbiased estimator of θ , and its variance is smaller than any other unbiased estimator (for all values of θ). By the bias-variance decomposition of the MSE, it is also the best estimator in terms of the MSE among the class of unbiased estimators.

Definition 2. A sufficient statistic T is complete (w.r.t θ) if

$$\mathsf{E}(g(T(X_1\dots,X_n))=0 \ \forall \theta \quad \Rightarrow \quad P(g(T)=0)=1 \ \forall \theta.$$

The above definition is sometimes referred to as a 'complete sufficient statistic does not admit any unbiased estimators of 0' (others than the zero function).

Theorem 2 (Lehmann-Scheffe). An unbiased estimator that is a complete sufficient statistic is the unique UMVUE.

The Lehmann-Sheffe theorem states that if you find an unbiased estimator that is a function of a complete sufficient statistic, it is the unique UMVUE. For such estimators, Rao-Blackwellization acts as an identity operator.

Example: Consider $\hat{\theta} = \bar{X}$ as an estimator of the parameter θ of a Bernoulli distribution. By the factorization theorem $L(\theta) = \prod \theta^{\sum x_i} (1-\theta)^{n-\sum x_i} = g(\theta, \bar{X})$ it is a sufficient statistic. To show completeness, note that under the Bernoulli distribution, $\sum X_i$ is a binomial RV and

$$\mathsf{E}\left(g(\bar{X})\right) = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} \theta^{i} (1-\theta)^{n-i} g(i/n) = n! (1-\theta)^{n} \sum_{i=0}^{n} \frac{g(i/n)}{i!(n-i)!} \left(\frac{\theta}{1-\theta}\right)^{i}$$

is a polynomial in $\theta/(1-\theta)$ and for it to be identically zero (for all θ), all its coefficients have to be zero. This implies that $g(\bar{X}) = 0$ with probability 1 and therefore \bar{X} is a complete sufficient statistic. Since it is also an unbiased estimator of θ , by the Lehmann-Sheffe theorem is the unique UMVUE for θ .