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In this note we review basic combinatorics as it applies to probability theory (see [1] for more information).
Although we are not concerned with probability in this note, we sometimes mention it under the assumption
that all configurations are equally likely. Thus if the sample space Ω is of size n and every configuration
or point is equally likely the probability of an event A ⊂ Ω is p(A) = |A|/n. Computing probabilities thus
becomes a problem of counting |A| and |Ω|.

Proposition 1. Given n1 elements a1, . . . , an1
, n2 elements b1, . . . , bn2

etc. up to nr elements x1, . . . , xnr

it is possible to form
∏r

j=1 nj ordered r-tuplets containing one element of each kind. In particular there are
nr ways to form ordered r-tuplets over n elements. Equivalently, there are nr ways to place r distinct balls
into n cells (choose one cell for each ball).

Proposition 2. For a population of n elements and a prescribed sample size r there exist nr different

(ordered) samples with replacement and (n)r
def
= n(n − 1) · · · (n − r + 1) samples without replacement. As a

corollary, the number of different orderings of n elements is n!
def
= n(n− 1)(n− 2) · · · 1.

Example: the birthdays of r people form a sample of size r from the population of all days in the year.
Assuming each 365 year days are equally likely the probability that all r birthdays are different equals

p =
|A|
|Ω|

=
(365)r
365r

=

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− r − 1

365

)
.

For a small p we can approximate by neglecting all cross products p ≈ 1−(1+2+· · ·+(r−1))/365 = 1−r(r−
1)/730 (for example r = 10 yields the approximation 0.877 ≈ 0.883 = p - note how close it is to 1). For large
r we use the approximation log(1−x) ≈ −x (for small x) to get log p ≈ −(1 + 2 + · · · )/365 = −r(r− 1)/730
(for example for r = 30 we get 0.30307 ≈ 0.294 = p).

Proposition 3. A population of n elements has

(
n
r

)
def
= (n)r/r! = n!/(r!(n− r)!) different sub-populations

of size r. Equivalently there are n!/(r!(n− r)!) ways to select r elements out of n distinct elements without
importance to their orderings.

Proof. There are (n)r ways to select r elements out of the n elements with ordering. Since there are r! possible
orderings of the selection we need to further divide (n)r by r! (in order to ignore these orderings).

Example: There are |Ω| =
(

52
5

)
different hands at poker. The probability that a hand has five different

face values (assuming all hands are equally likely) is 45
(

13
5

)
/

(
52
5

)
≈ 0.507 (face values are chosen in

(
13
5

)
ways and there are four suits possible for each of the five face values).

Example: The number of sequences of length p + q containing p alphas and q betas is

(
p + q
p

)
(choose

p among p + q sequence positions and assign them to alphas).

Proposition 4. The number of ways to deposit n distinct objects into k bins with ri objects in bin i (ri are
non-negative integers summing to n) is n!/(r1! · · · rk!) (ordering of bins is important but within each bin the
ordering is not important).
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Proof. Repeated use of the previous proposition shows that the number may be written as(
n
r1

)(
n− r1
r2

)(
n− r1 − r2

r3

)
· · ·
(
n− r1 − · · · − rk−2

rk−1

)
.

Example: A throw of twelve dice can result in 612 different outcomes which we consider equally likely.
The event that each face appears twice can occur in as many ways as twelve dice can be arranged in six
groups of two each. The probability of that event is therefore 12!/(26 · 612) ≈ 0.0034.

The statements thus far were mostly concerned with placing r distinct balls into n distinct cells (with or
without orderings). In some cases it is desirable to treat the balls as indistinguishable.

Proposition 5. The number of ways to place r indistinguishable objects into n distinct cells is Ar,n
def
=

(
n + r − 1

r

)
=(

n + r − 1
n− 1

)
. The number of ways to do so if no cell remains empty is

(
r − 1
n− 1

)
.

Proof. We represent a configuration as a sequence of indistinguishable objects and cell boundaries i.e.,
| ∗ ∗| ∗ || ∗ ∗| corresponds to 2 objects in cell 1, 1 in cell 2 and 2 in cell 4. In the first case, the number equals
the number of ways to choose the r interior cell boundaries from the total number of symbols in the interior
r+n−1 (once you select the cell boundaries the remaining positions becomes the indistinguishable objects).
In the second case we have an added constraints that no two cell boundaries may be adjacent. The number
then corresponds to selections of the positions of the n − 1 interior cell boundaries out of r − 1 potential
positions in between two indistinguishable objects.

Example: There are

(
n + r − 1

r

)
different partial derivatives of order r.

Consider a population of n elements with n1 of them red and n2 = n − n1 black. The probability that

a draw of r elements (without replacement) has k red elements is qk =

(
n1

k

)(
n− n1

r − k

)
/

(
n
r

)
(number of

ways to get a configuration of k red from n1 and r − k non-red from n− n1 divided by the total number of
configurations). This probability is commonly known as the hypergeometric distribution and differs from the
binomial distribution in that the sampling in this case is without replacement (the two become equivalent
as r � n).

Example: In industrial quality control items are sampled from a collection of items and inspected for
defects. The probability of sampling k defected items out of r items is given by the hypergeometric distri-
bution. The total population size n as well as k and r are known but the number of defected items in the
population n1 is unknown. The latter may be estimated by maximizing the likelihood of the sample, and
may be given confidence interval using standard statistical estimation1.

Example: (capture-recapture) Consider the following experiment in an attempt to estimate the number
of fish in a lake. First, n1 fish are captures, marked, and released. At a later time, r fish are caught with
k of them bearing the mark of the original capture. Assuming the size of the population of fish is n, the
probability of getting k marked fish in the second capture follows the hypergeometric distribution with the
corresponding parameters. In this case, n1, r, k are known but n is unknown. We can estimate n or construct
confidence intervals using the likelihood (probability of observed data as a function of the unknown parameter
n)1. For example, if k = 100, n1 = r = 1000 we have 93% confidence interval that n ∈ (8500, 12000).
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1In this case we have but a single experiment. More accurate estimators may be constructed by repeated the process multiple
times and maximizing the likelihood of n1 over the set of experiments.
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