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It is satisfactory to know that an estimator θ̂ will perform better and better as we obtain more examples.
If at the limit n →∞ the estimator tend to be always right (or at least arbitrarily close to the target), it is
said to be consistent. This notion is equivalent to convergence in probability defined below.

Definition 1. Let Z1, Z2, . . . be iid RVs and Z be a RVs. We say that Zn converge in probability to Z,
denoted Zn→p Z if

lim
n→∞

P (|Zn − Z| ≤ ε) = 1 ∀ε > 0.

Consistency is defined as above, but with the target θ being a deterministic value, or a RV that equals θ
with probability 1.

Definition 2. Let X1, X2, . . . be a sequence of iid RVs drawn from a distribution with parameter θ and θ̂ an
estimator for θ. We say that θ̂ is consistent as an estimator of θ if θ̂ →p θ or

lim
n

P (|θ̂(X1, . . . , Xn)− θ| ≤ ε) = 1 ∀ε > 0.

Consistency is a relatively weak property and is considered necessary of all reasonable estimators. This
is in contrast to optimality properties such as efficiency which state that the estimator is “best”.

Consistency of θ̂ can be shown in several ways which we describe below. The first way is using the law
of large numbers (LLN) which states that an average 1

n

∑
f(Xi) converges in probability to its expectation

E (f(Xi)). This can be used to show that X̄ is consistent for E (X) and 1
n

∑
Xk

i is consistent for E (Xk).
The second way is using the following theorem.

Theorem 1. An unbiased estimator θ̂ is consistent if limn Var (θ̂(X1, . . . , Xn)) = 0.

Proof. Since θ̂ is unbiased, we have using Chebyshev’s inequality P (|θ̂− θ| > ε) ≤ Var (θ̂)/ε2. For any ε > 0,
if Var (θ̂(X1, . . . , Xn)) = 0, then P (|θ̂ − θ| > ε) → 0 as well.

The third way of proving consistency is by breaking the estimator into smaller components, finding the
limits of the components, and then piecing the limits together. This is described in the following theorem
and example.

Theorem 2. Let θ̂ →p θ and η̂ →p η. Then

1. θ̂ + η̂ →p θ + η.

2. θ̂η̂ →p θη.

3. θ̂/η̂ →p θ/η if η 6= 0.

4. θ̂ →p θ ⇒ g(θ̂) →p g(θ) for any real valued function that is continuous at θ.

The above theorem can be used to prove that S2 is a consistent estimator of Var (Xi)

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)
=

n

n− 1

(
1
n

∑
X2

i − X̄2

)
.
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By the LLN X̄ →p E (X) and 1
n

∑
X2

i →p E (X2) and by adding the above theorem we have X̄2 →p E (X)2.
Using the theorem again we have

(
1
n

∑
X2

i − X̄2
)
→p E (X2) − E (X)2 = Var (X) and again gives us the

desired result S2 = n
n−1

(
1
n

∑
X2

i − X̄2
)
→p 1 · Var (X).

The following theorem connects between convergence in probability and convergence in distribution.

Definition 3. A sequence of RVs Xn converges in distribution to X if FXn(r) → FX(r) for all r at which
FX is continuous.

Convergence in distribution is the convergence concept described in the central limit theorem. In general,
it is a weaker form of convergence than convergence in probability. The following theorem connects the two
concepts.

Theorem 3 (Slutsky’s theorem). If Xn converges in distribution to X and Yn converges in probability to c
then XnYn converges in distribution to cX and Xn + Yn converges in distribution to c + X.

One of the applications of the above theorem is that it show that the studentized RV
√

n X̄−µ
S =

√
n σ

S
X̄−µ

σ
converges in distribution to N(0, 1) RV, where we used the fact that

S2 →p σ2 ⇒ S →p σ ⇒ σ/S →p 1/1 = 1

and the central limit theorem. This is a very potent result as it can be used instead of the CLT when σ2 is
unknown.
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