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In this note we define convex functions and describe some important properties. We describe in some
detail the concept of convex conjugacy as it plays a major role in computational statistics.

Definition 1. The graph of a function f : A → R, A ⊂ Rn. is the set {(x, y) : x ∈ A, f(x) = y} ⊂ Rn+1

and the epi-graph of f is the set {(x, t) : x ∈ A, f(x) ≤ t} ⊂ Rn+1.

Definition 2. Let A ⊂ Rn be a convex set. A function f : A → R is convex if

∀θ ∈ [0, 1], ∀x, y ∈ A, f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

If we have strict inequality above we say that f is strictly convex. If −f is convex, we say that f is concave.

Note that for the above definition to make sense the requirement that A is convex is necessary. Geomet-
rically, the above definition is equivalent to saying the every convex combination of points on the graph of
the function is above or on the graph itself, i.e. in its epi-graph. This is also equivalent to saying that a
function is convex iff its epi-graph is a convex set.

Example: All affine functions are both concave and convex (but not strictly).
If f is convex with domain A, we define its extension f̃ : Rn → R ∪ {∞} as f̃(x) = f(x) for x ∈ A and

f(x) = +∞ otherwise. Thus we can convert a convex function on a convex set A to a convex function on Rn

that is equivalent to f in some sense. When dealing with extended infinite values of extended real-valued
functions we need to use the appropriate arithmetics e.g. ∞ ≥∞ > c ∈ R and ∞+∞ = ∞.

Proposition 1 (First order differentiability condition). A differentiable function f on a convex domain is
convex iff f(y) ≥ f(x)+∇f(x)>(y−x) i.e. the graph is above the second order Taylor approximation plane.

A consequence of the above result is that for a convex function f , ∇f(x) = 0 implies that x is a global
minimum.

Proposition 2 (Second order differentiability condition). If f is twice differentiable on a convex domain A,
then it is convex iff the Hessian matrix H(x) is positive semi-definite for all x ∈ A.

The second order condition above makes it relatively easy to check whether a differentiable function is
convex. Examples: the following functions are convex: exponential, logarithm, norm functions, cumulant
generating function of exponential family distributions (log of the normalization term), Kullback-Leibler
divergence. Similarly, it can be shown that the entropy and the log of the determinant are concave functions.

Proposition 3 (Jensen’s Inequality). For a convex function f and a RV X, f(E (X)) ≤ E f(X).

The following operations preserve convexity of functions.

• A weighted combination with positive weights of convex functions is convex. If wi > 0 and f1, . . . , fn

are convex then
∑

wifi is convex (with a similar result for integration rather than summation). This
can be seen by the second order condition for convexity.

• The point-wise maximum or supremum of convex functions is convex (this is a consequence of the fact
that the intersection of convex epi-graphs is a convex epi-graph).

• If f is convex in (x, y) and C is a convex set then infy∈C f(x, y) is convex in x.
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Definition 3. The convex or Fenchel conjugate of f : Rn → R ∪ {∞} is f∗(y) = supx(y>x− f(x)).

Since the f∗ is a point-wise supremum of convex functions in y, it is convex (even if f is not convex).
Also, f∗ is always lower semi-continuous since it is the point-wise supremum of lsc affine functions in y.

Example: For f(x) = α>x + β we have

f∗(y) = sup
x

(y>x− f(x)) = sup
x

(y>x− α>x− β) = sup
x

(x>(y − α)− β) ⇒ f∗(y) =

{
−β y = α

∞ otherwise
.

Example: For f(x) = − log x, we have f∗(y) = supx(yx + log x). If y ≥ 0 f∗(y) = ∞. If y < 0, the
supremum is achieved at x = −1/y and then f∗(y) = −1 + log(−1/y) = − log(−y)− 1.

Example: For f(x) = ex, f∗(y) = supx(yx − ex). Again, for y < 0, f∗(y) = ∞. On the other hand,
f∗(0) = sup−ex = 0 and for y > 0, the supremum is attained at log y and therefore f∗(y) = y log y − y for
y > 0.

Example: For f(x) = x log x, f∗(y) = supx(yx−x log x). For all y the supremum is attained at x = ey−1

and we get f∗(y) = yey−1 − ey−1(y − 1) = ey−1.
Example: For f(x) = 1

2x>Qx with Q symmetric positive definite, f∗(y) = supx y>x − 1
2x>Qx and for

all y, the supremum is attained at 0 = y> − x>Q or x = Q−1y hence f∗(y) = y>Q−1y − 1
2y>Q−1QQ−1y =

1
2y>Q−1y.

Example: For IS the indicator function of a set S (IS(x) = 0 if x ∈ S and ∞ otherwise), we have
I∗S(y) = supx y>x− IS(x) = supx∈S y>x. In particular, I∗v (λ) = v>λ, I∗{v:−c≤vi≤c} =

∑
i c|λi| = c‖λ‖1, and

I∗{v:‖v‖2≤c} = λ>c λ
‖λ‖2 = β‖λ‖2.

In the case that f is differentiable the convex conjugate is also called the Legendre transform. Although
not necessary, in the following we assume that f is also convex and defined on all Rn (possibly taking ∞
values). In this case, the supremum in f∗(y) is attained at x′ for which 0 = y − ∇f(x′). If the supremum
is attained f∗(y) = (∇f(x′))>x′ − f(x′). In other words, for an arbitrary z such that y = ∇f(z) we have
f∗(y) = z>∇f(z)− f(z) = (∇f(z),−1)>(z, f(z)).

This leads to the following geometric interpretation of the Legendre transform in the space Rn+1 that

contains the epi-graph. First observe that the hyperplane α>(y, t) + β characterized by α =
(
∇f(z)
−1

)
and

β = −
(
∇f(z)
−1

)> (
z

f(z)

)
is supporting the graph of f at (z, f(z)) since

(y, t) ∈ epi(f) ⇒ t ≥ f(y) ≥ f(z) +∇f(z)>(y − z) ⇒
(
∇f(z)
−1

)> ((
y
t

)
−

(
z

f(z)

))
≤ 0

⇒ α>
(

y
t

)
+ β ≤ 0.

where above we used the first order condition for convexity. The vertical distance of the hyperplane α>(y, t)+
β from the origin is β which happens to be minus the Legendre transform f∗(∇f(z)). This leads to the
interpretation of the Legendre transform f∗(y) as the vertical offset of the supporting hyperplane to the
graph of f at (z, f(z) where y = ∇f(z). Intuitively, the Legendre transform maps a differentiable convex
function to vertical offsets of supporting hyperplanes.

For convex lower semi-continuous functions f , (f∗)∗ = f and hence the convex conjugate is invertible
(its inverse is itself).
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