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In point estimation, we use an estimator θ̂ which is a function of the data X1, . . . , Xn, to estimate
a parameter of interest θ. In a previous note, we saw that the expected squared error of an estimator
decomposes as a sum of the bias squared and the variance

MSE(θ̂) = E((θ̂(X1, . . . , Xn)− θ)2) = Bias 2(θ̂) + Var (θ̂).

We can compare the quality of two estimators by looking at the ratio of their MSE. If the two estimators
are unbiased this is equivalent to the ratio of the variances which is defined as the relative efficiency.

Definition 1. The relative efficiency of two unbiased estimators θ̂1, θ̂2 is the ratio of their variances Var (θ̂1)

Var (θ̂2)
.

In general the relative efficiency is a function of θ, and so some estimators will have lower MSE than
others for some values of θ but not for other values of θ. In some cases, however, the relative efficiency does
not depend on θ and then in points at a clear advantage of one estimator over another in terms of the MSE.

Example: Consider two estimators for the parameter θ of a uniform distribution U(0, θ): θ̂1 = 2X̄ and
θ̂2 = n+1

n X(n) where X(n) is the maximum of the data X1, . . . , Xn. θ̂1 is unbiased as E (θ̂1) = 2E (X1) =
2θ/2 = θ and has variance

Var (θ̂1) = 4Var (X̄) =
4
n

Var (X1) =
4
n

θ2

12
=

θ2

3n
.

To find the expectation and variance of θ̂2 first recall that the cdf of X(n) is

FX(n)(r) = P (Xi ≤ n : ∀i) =
∏

i

FXi
(r) = (FX1(r))

n =
rn

θn

and the pdf of X(n) is fX(n)(r) = n rn−1

θn . θ̂2 is unbiased as

E (θ̂2) =
n + 1

n

n

θ2

∫ θ

0

rndr =
n + 1

n
· n

n + 1
θ.

Using E (X2
(n)) = n

θn

∫ θ

0
rnrdr = n

n+2θ2 we have that

Var (θ̂2) =
(n + 1)2

n2
Var (X(n)) =

(n + 1)2

n2
(E (X2

(n))− (E (X(n)))2) =
(n + 1)2

n2
θ2 n

(n + 2)(n + 1)2
=

θ2

n(n + 2)

and the relative efficiency is
Var (θ̂1)

Var (θ̂2)
=

θ2/3n

θ2/(n(n + 2))
=

n + 2
3

indicating that for n > 1, θ̂2 has a lower variance.
The following theorem bounds the variance of estimators, and enables us to assert in some cases (when

we find an estimator whose variance equals the lower bound) that we have an estimator with the lowest
possible variance.
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Definition 2. For one dimensional parametric family with a pdf or pmf f(x ; θ), θ ∈ Θ ⊂ R, we define the
Fisher information to be the following function

I(θ) = E

((
d

dθ
log f(x ; θ)

)2
)

.

Note that the above definition makes sense for both continuous and discrete RVs. The pdf or pmf,
however, needs to be continuous and differentiable with respect to θ. An intuitive interpretation behind the
Fisher information is that is serves as a quantity that determines the information that an observation X
conveys with respect to estimating θ.

Theorem 1 (Cramer-Rao Lower Bound). For an arbitrary estimator

Var (θ̂) ≥
( d

dθE(θ̂))2

nI(θ)
.

Note that for unbiased estimators E (θ̂) = θ and the numerator is 1.

Definition 3. If θ̂ is an estimator whose variance achieves equality in the Cramer Rao lower bound (for all
θ), it is called efficient.

Note that an efficient estimator is an estimator with lowest possible variance. If it also has bias 0, it is
the best estimator in terms of the MSE. Before we prove the theorem we establish several useful results (for
a discrete RV replace integrals with sums)

E

(
d

dθ
log f(x ; θ)

)
=
∫

f(x ; θ)
d

dθ
log f(x ; θ)dx =

∫
d

dθ
f(x ; θ)dx =

d

dθ

∫
f(x ; θ)dx =

d

dθ
1 = 0

I(θ) = E

((
d

dθ
log f(x ; θ)

)2
)
− 0 = Var

(
d

dθ
log f(x ; θ)

)

I(θ) = −
∫

d2

dθ2
f(x ; θ)dx + E

((
d

dθ
log f(x ; θ)

)2
)

= −E

(
f(x ; θ) d2

dθ2 f(x ; θ)− (d/dθf(x ; θ))2

f(x ; θ)2

)

= −E

(
d2

dθ2
log f(x ; θ)

)
.

Proof. We proved previously that the correlation coefficient is in [−1, 1] which implies that

Cov

(
θ̂,

d

dθ

∑
i

log f(xi ; θ)

)2

≤ Var (θ̂) Var

(
d

dθ

∑
i

log f(xi ; θ)

)
= Var (θ̂)nI(θ).

To complete the proof we need

Cov

(
θ̂,

d

dθ

∑
i

log f(xi ; θ)

)
= E

(
θ̂

d

dθ

∑
i

log f(xi ; θ)

)
− 0 =

∫ ∏
i

f(xi ; θ)θ̂
d

dθ
log
∏

i

f(xi ; θ)dx1 · · · dxn

=
∫

θ̂(x1, . . . , xn)
d

dθ

∏
i

f(xi ; θ) dx1 · · · dxn =
d

dθ
E (θ̂)

There exists a multi-parameter definition of the Fisher information, which leads to a multi-parameter
version of the Cramer-Rao lower bound, but we will not pursue it here.

Example: For the Bernoulli distribution we have log f(x ; θ) = x log θ + (1− x) log(1− θ) and

I(θ) = −E

(
d2

dθ2
log f(x ; θ)

)
= E

(
x

θ2
+

1− x

(1− θ)2

)
=

1
θ

+
1

1− θ
=

1
θ(1− θ)

.

Since E (X̄) = θ and Var (X̄) = n−1Var (X1) = n−1θ(1− θ), we have that θ̂ = X̄ is an efficient estimator.
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