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The exponential family of distribution is the most important class of distributions in statistics. It is
parameterized by a vector θ ∈ Rd and assuming X ∈ X is defined using feature functions fi : X → R,
i = 1, . . . , d as

pθ(X) =
1

Z(θ)
h(X) exp

(
θ>f(X)

)
= h(X) exp

(
θ>f(X)− logZ(θ)

)
(1)

where f(X) = (f1(X), . . . , fd(X))> is a column vector of feature function values and Z(θ) ensures normal-
ization

Z(θ) =
∑
X∈X

h(X) exp(θ>f(X)) (2)

(the sum above is over all possible values of X i.e., over X , and should be replaced with an integral if X is
continuous rather than discrete). The distribution is thus determined via θ (the parameter vector), f (set of
d feature functions), and h (carrier density). The term Z is determined automatically from θ, h, f in order
to ensure normalization (note that it does not depend on X but it does depend on θ).

In practice, one determines the carrier density h as a reasonable guess of p (h should be high for highly
probable X and low otherwise), from example using domain knowledge or some other estimation procedure
that was done beforehand. The features f are chosen to be patterns or measurements that may or may not
be useful in order to distinguish between highly probable and less probable values of X. After defining h, f
the parameter θ is determined using a maximum likelihood estimator.

The representation above (1) is sometimes written in a more general form where θi is replaced by gi(θ)
i.e., the features are multiplied by features of the parameter vector rather than the parameter vector itself.
But as this amounts to re-parameterization we can always define θ′i = gi(θ) and proceed using (1) without
loss of generality.

Note that the feature functions f1, . . . , fd may be as simple as fi(X) = Xi but in general may be nonlinear
in the dimensions for example, f1(X) = X1, f2(X) = X2, f3(X) = X1X2, f4(X) = X2

1 , f5(X) = X2
2 ,

f6(X) = log(X1), etc. This way the number of features and the number of parameters d may be very high
even if X is of low dimensionality. The resulting model is very powerful at modelling arbitrary distributions
- assuming that enough (and the right) features were defined. It is typically better to select too many
features than too little as insignificant features will be assigned a parameter 0 using the maximum likelihood
estimation (assuming we have enough training data).

The exponential family includes as special cases many well known distributions such as the multivariate
normal, the Poisson, Dirichlet, multinomial (which includes binomial and Bernoulli), beta, and gamma
distributions. For example the univariate normal may be written as

pµ,σ2(X) = exp
(
−X2/2σ2 + 2Xµ/σ2 − µ22/σ2 − log

√
2πσ2

)
= exp (θ1f1(X) + θ2f2(X)− logZ(θ))

where f1(X) = X, f2(X) = X2, θ1 = 2µ/σ2, θ2 = −1/σ2 and Z is determined by (2). Notable distributions
that cannot be represented by (2) are the uniform U [0, θ] and mixtures of Gaussians.

It is straightforward to derive that

∂ logZ(θ)

∂θi
= E pθfi(X),

∂2 logZ(θ)

∂θi∂θj
= −Cov pθ (fi(X), fj(X)). (3)
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As a result the loglikelihood function

`(θ) = −n logZ(θ) +

n∑
i=1

θ>f(X(i)) + log h(X(i))

has partial derivatives

∂`(θ)

∂θj
=

n∑
i=1

fj(X
(i))− nE pθ (fj(X)),

∂2`(θ)

∂θi∂θj
= −nCov (fi(X), fj(X)).

which may be used with gradient descent for obtaining the maximum likelihood estimator θ̂. We can also
observe from the equation above that the MLE θ̂ satisfies the following equalities between expectations and
averages over the training set

1

n

n∑
i=1

fj(X
(i)) = E pθ (fj(X)) j = 1, . . . , d. (4)

This equality makese sense intuitively as the averages (left hand side) converge to their expectations (right
hand side) as n → ∞ due to the law of large numbers. A very useful property of the exponential family
is that the loglikelihood is concave which ensures that there is at most a single maximum likelihood (no
multiple local maxima). The concavity of `(θ) can be proved by showing that the matrix of second order
derivatives of `(θ) (the Hessian) is negative definite1 (see (3))

v>H(θ)v = −nv>Var (f1(X), . . . , fd(X))v = −nv>E ((f(X)− E f(X))(f(X)− E f(X))>)v

= −nE (v>(f(X)− E f(X))(f(X)− E f(X))>v) = −nE ((f(X)− E f(X))>v)>(f(X)− E f(X))>v

= −nEW>W ≤ 0.

Logistic Regression

The discriminative modeling task of predicting Y given X is often done by assuming an exponential family for
the random vector Z = (X,Y ) pθ(X,Y ) = h(X,Y ) exp(θ>f(X,Y )> − logZ(θ)) and obtaining an estimate
of pθ(Y |X) = pθ(X,Y )/

∑
Y pθ(X,Y ) = pθ(X,Y )/Z(θ,X) by maximizing the conditional loglikelihood

θ̂ = arg max
∑n
i=1 pθ(Y

(i)|X(i)). The resulting θ̂ is plugged in to obtain pθ̂(Y |X) which is useful for deriving
the optimal Bayes rule prediction (given X it predicts X that minimizes the Bayes risk).

The features f1, . . . , fd are in this case functions of both X and Y . In the case of logistic regression (Y ∈
{+1,−1} we have fi(X,Y ) = Y f̃i(X)/2 (for some features f̃ of X, that are often taken to be f̃i(X) = Xi)
to obtain

pθ(Y |X) =
1

Z(θ,X)
exp

(
Y θ>f̃(X)/2

)
=

eY θ
>f̃(X)/2

eY θ>f̃(X)/2 + e−Y θ>f̃(X)/2
=
(

1 + e−Y θ
>f̃(X)

)−1
. (5)

Logistic regression is sometimes written as log pθ(1|X)
1−pθ(1|X) = θ>f̃(X) which is equivalent to (5) (this may

be seen by solving the equation log(p/(1 − p)) = θ>f̃(X) for p = pθ(1|X)). The estimate θ̂ obtained by
maximizing the conditional loglikelihood

θ̂ = arg max
θ

n∑
i=1

log pθ(Y
(i)|X(i)) = arg min

θ

n∑
i=1

log(1 + e−Y
(i)θ>f̃(X(i)))

results in one of the best performing classifiers in practice (in many cases better than Fisher’s LDA, naive
Bayes, nearest neighbors, decision trees). It is linear in f̃1(X), . . . , f̃d(X) and the decision boundary is a
linear hyperplane in that space. Its Bayes rule prediction in the case of the 0/1 loss is Ŷ = arg maxy pθ(y|X).

1A matrix H is negative definite if for all vectors v, we have v>Hv < 0. For symmetric matrices this is equivalent to all
eigenvalues being negative.
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