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Conditional expectation comes in two flavors. The first a number E(Y |X = x) ∈ R and the second
E(Y |X) is a random variable itself (a function from Ω to R). We cover these cases and then proceed to
discuss covariance and correlation which are the analogue of variance for vector random variables.

Definition 1. The conditional expectation of the RV Y |X = x is

E(Y |X = x) =

{∫∞
−∞ yfY |X=x(y) dy Y |X = x is a discrete RV∑

y∈R ypY |X=x(y) Y |X = x is a continuous RV

Intuitively, it represents the mean or average value of Y if we know that X = x. The above definition
extends naturally to conditioning on multiple RVs e.g. E(Xi|{Xj = xj : j 6= i}) (just use the appropriate
conditional pdf or pmf in the definition above).

The conditional expectation E(Y |X = x) is a real number, assuming that x is fixed ahead of time. If we
look at it as a function of x i.e., g(x) = E(Y |X = x), we obtain a function that assigns a real number g(x)
for every value x ∈ R. This leads to the following definition. It is an elusive concept which require careful
thinking.

Definition 2. The conditional expectation E(Y |X) is a RV E(Y |X) : Ω → R defined as follows:

E(Y |X)(ω) = E(Y |X = X(ω)).

In other words, for every value ω ∈ Ω we obtain a value X(ω) ∈ R which we may denote as x and this in
turn leads to the real number E(Y |X = x). Note that E(Y |X) is a RV that is a function of the RV X.

Since E(Y |X) is a random variable, we can compute its expectation. The following theorem is sometimes
useful

Theorem 1. For any two RVs X, Y we have E(E(Y |X)) = E(Y ).

Proof. We prove the result for the continuous case. The discrete case can be proven using an analogous
proof.

E(E(Y |X)) =
∫ ∞

−∞
E(Y |X = x)fX(x) dx =

∫ ∞

−∞

∫ ∞

−∞
yfY |X=x(y) dyfX(x) dx

=
∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dxdy =

∫ ∞

−∞
yfY (y) dy = E(Y )

where the first equality holds by the formula for expectation of a function of a random variable E(g(X)) =∫
g(x)fX(x)dx.

Example: Suppose that X is uniform on [0, 1] and that Y |X = x is uniform on [x, 1]. What is E(Y )?
For each given value of x between 0 and 1, E(Y |X = x) will equal the midpoint (x + 1)/2 of the interval

[x, 1]. Therefore E(Y |X) = (X + 1)/2 and by the linearity of the expectation,

E(Y ) = E(E(Y |X)) = (E(X) + 1)/2 =
(

1
2

+ 1
)

/2 = 3/4.
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As for RVs, the expectation of a function of a vector RV Y = g( ~X) (Y is a one dimensional RV here) is

E(Y ) =

{∫
Rn g(~x)f ~X(~x) d~x ~X is continuous∑

~x∈Rn g(~x)p ~X(~x) ~X is discrete
(1)

Important note: When you see expectation over several RVs, for example E(X + Y ), it is assumed that
the expectation is taken with respect to (the integral, or sum) the joint distribution or all variables that
appear in the argument.

We have that (if X, Y are discrete replace integrals with sum and pdf with pmf)

E(X + Y ) =
∫∫ ∞

−∞
(x + y)fX,Y (x, y) dxdy =

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y) dydx +

∫ ∞

−∞
y

∫
fX,Y (x, y) dxdy

= E(X) + E(Y ).

By induction we obtain the linearity property of expectation for a finite sum of RVs (not necessarily inde-
pendent): E(X1 + . . . + Xn) =

∑n
i=1 E(Xi).

If X, Y are independent, we have (again, for discrete RV, replace integrals with sums and pdf with pmf)
for some functions g1, g2 (that could be the identity)

E(g1(X)g2(Y )) =
∫∫ ∞

−∞
g1(x)g2(y)fX,Y (x, y) dxdy =

∫∫ ∞

−∞
g1(x)g2(y)fX(x)fY (y) dxdy

=
(∫ ∞

−∞
g1(x)fX(x)dx

)(∫ ∞

−∞
g2(y)fY (y)dy

)
= E(g1(X))E(g2(Y )).

In particular, we have that for independent X, Y , E(XY ) = E(X)E(Y ). Again the above result may be
generalized by induction to a finite product of functions of RVs.

The covariance of X, Y is the generalization of the variance E((X − E(X))2).

Definition 3. The covariance of two RV X, Y is Cov (X, Y ) = E((X − E(X))(Y − E(Y ))).

An alternative expression that is sometimes more convenient is

Cov (X, Y ) = E(XY−XE(Y )−Y E(X)+E(X)E(Y )) = E(XY )−2E(X)E(Y )+E(X)E(Y ) = E(XY )−E(X)E(Y ).

Recall that for independent X, Y E(XY ) = E(X)E(Y ) and so Cov (X, Y ) = 0. However, the converse
statement is false as there exists random variables that have covariance 0 but are dependent. Intuitively, the
covariance measures the extent to which there exists a linear relationship between X, Y e.g. X = αY + β.
If there is no linear relationship, the covariance is zero but the variables may still be dependent.

Definition 4. For two random variables X, Y the correlation coefficient ρX,Y is defined as

ρX,Y =
Cov (X, Y )√

Var (X)
√

Var (Y )
.

Its virtue is in the fact that it is a normalized version of the covariance. While Cov (X, Y ) can take on
any real value, −1 ≤ ρX,Y ≤ 1 always with |ρX,Y | = 1 if there is a linear relationship between X, Y e.g.
X = αY + β and 0 if X, Y are independent.

To see that −1 ≤ ρX,Y ≤ 1 observe that since the expectation of a non-negative RV is non-negative,

0 ≤ E

(X − E(X)√
Var (X)

± Y − E(Y )√
Var (Y )

)2
 =

E((X − E(X))2)
VarX

+
E((Y − E(Y ))2)

VarY
± 2ρX,Y = 2(1± ρX,Y )

which implies that 0 ≤ 1± ρ that is equivalent to −1 ≤ ρX,Y ≤ 1.
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