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Conditional expectation comes in two flavors. The first a number E(Y|X = z) € R and the second
E(Y|X) is a random variable itself (a function from €2 to R). We cover these cases and then proceed to
discuss covariance and correlation which are the analogue of variance for vector random variables.

Definition 1. The conditional expectation of the RVY|X = x is
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Intuitively, it represents the mean or average value of Y if we know that X = z. The above definition
extends naturally to conditioning on multiple RVs e.g. E(X;|{X; = x; : j # ¢}) (just use the appropriate
conditional pdf or pmf in the definition above).

The conditional expectation E(Y|X = z) is a real number, assuming that x is fixed ahead of time. If we
look at it as a function of z i.e., g(z) = E(Y|X = z), we obtain a function that assigns a real number g(x)
for every value z € R. This leads to the following definition. It is an elusive concept which require careful
thinking.

Definition 2. The conditional expectation E(Y|X) is a RV E(Y|X) : Q — R defined as follows:
EY|X)(w)=EY|X = X(w)).

In other words, for every value w € Q we obtain a value X(w) € R which we may denote as © and this in
turn leads to the real number E(Y|X = z). Note that E(Y|X) is a RV that is a function of the RV X.

Since E(Y'|X) is a random variable, we can compute its expectation. The following theorem is sometimes
useful

Theorem 1. For any two RVs X,Y we have E(E(Y|X)) = E(Y).

Proof. We prove the result for the continuous case. The discrete case can be proven using an analogous
proof.
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where the first equality holds by the formula for expectation of a function of a random variable E(g(X))
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Example: Suppose that X is uniform on [0, 1] and that Y|X = z is uniform on [z,1]. What is E(Y")?
For each given value of = between 0 and 1, E(Y|X = z) will equal the midpoint (x + 1)/2 of the interval
[x,1]. Therefore E(Y|X) = (X + 1)/2 and by the linearity of the expectation,
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As for RVs, the expectation of a function of a vector RV Y = g(i ) (Y is a one dimensional RV here) is
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Important note: When you see expectation over several RVs, for example E(X 4 Y), it is assumed that
the expectation is taken with respect to (the integral, or sum) the joint distribution or all variables that
appear in the argument.

We have that (if X,Y are discrete replace integrals with sum and pdf with pmf)
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By induction we obtain the linearity property of expectation for a finite sum of RVs (not necessarily inde-
pendent): E(X; +...4+ X,,) =", B(X;).

If X,Y are independent, we have (again, for discrete RV, replace integrals with sums and pdf with pmf)
for some functions g1, g2 (that could be the identity)
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In particular, we have that for independent X,Y, F(XY) = E(X)E(Y). Again the above result may be
generalized by induction to a finite product of functions of RVs.
The covariance of X,Y is the generalization of the variance F((X — E(X))?).

Definition 3. The covariance of two RV X,Y is Cov(X,Y)=E((X — E(X))(Y — E(Y))).

An alternative expression that is sometimes more convenient is
Cov(X,Y)=E(XY-XEY)-YE(X)+E(X)E(Y)) = E(XY)2E(X)E(Y)+E(X)E(Y) = E(XY)-E(X)E(Y).

Recall that for independent X,Y E(XY) = E(X)E(Y) and so Cov(X,Y) = 0. However, the converse
statement is false as there exists random variables that have covariance 0 but are dependent. Intuitively, the
covariance measures the extent to which there exists a linear relationship between X,Y e.g. X = aY + (.
If there is no linear relationship, the covariance is zero but the variables may still be dependent.

Definition 4. For two random variables X,Y the correlation coefficient px y is defined as
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Its virtue is in the fact that it is a normalized version of the covariance. While Cov (X,Y") can take on
any real value, —1 < pxy < 1 always with |px y| = 1 if there is a linear relationship between X,Y e.g.

X =aY + F and 0if X,Y are independent.
To see that —1 < px,y < 1 observe that since the expectation of a non-negative RV is non-negative,
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which implies that 0 <1 & p that is equivalent to —1 < pxy < 1.



