
Introduction to Logistic Regression

Guy Lebanon

1 Binary Classification

Binary classification is the most basic task in machine learning, and yet the most frequent.
Binary classifiers often serve as the foundation for many high tech ML applications such as
ad placement, feed ranking, spam filtering, and recommendation systems.

Below, we assume that x is a d-dimensional vector x = (x1, . . . , xd) of real numbers, and
y is a scalar denoting the label: +1 or -1. We will denote by θ the vector of parameters
defining the classifier, whose dimensionality is the same as that of x: θ = (θ1, . . . , θd). The
inner product between θ and x is defined as follows 〈x, θ〉 = θ1x1 + · · ·+ θdxd.

The binary classification task is defined as follows: Given a vector of features x, assign
a label y of +1 or -1. A binary classifier is a rule that makes such mapping for arbitrary
vectors x. The classifier is typicaly learned based on training data composed of n labeled
vectors: (x(1), y(1)), . . . , (x(n), y(n)). Note that each x(i) is a vector and y(i) its +1 or -1 label.

For example in the case of the LinkedIn feed, x can contain measurements characterizing
the user and item, and y represents whether the user clicks or not on the item. An example
for a feature could be x5 = 1 if the user has more than 500 connections and the item is a
connection update. There could be thousands or more such features. The training data is a
sequence of user-item and click/no-click information, and at serving time the classifier tries
to predict whether the user will click on the feed item or not.

2 Linear Classifiers and Hyperplanes

A linear classifer is a classifier that has the following algebraic form: y = sign(〈θ, x〉). That
is, the predicted label of the vector x is the sign of the inner product of that vector with
another vector θ that is called the parameter vector of the classifier. If 〈x, θ〉 is positive the
predicted class is +1 and if it is negative the predicted class is -1.

Despite their simplicity (and probably because of it), linear classifiers are the most widely
used. There are several reasons: (a) they are easy to train, (b) they can predict labels very
fast at serve time (if x is sparse i.e., mostly zeros, the inner product computation 〈θ, x〉 is
extremeley fast), (c) and we know quite well the statistical theory of linear classifiers leading
to effective modeling strategies. Arguably, the most widely used linear classifier is logistic
regression. Logistic regression, or its variations, power main functions in big companies like
Google, LinkedIn, and Amazon, as well as in small startups.

1

A note on dimensionality: For visualization purposes we should assume that there are only
two features i.e., d = 2. In reality, d may be quite higher such as 104− 106. Linear classifiers
excel at such high-dimensional cases due to their simplicity, their attractive computational
load, and the nice statistical properties.

There is another reason why linear classifiers are called linear besides the fact that the
classification rule is defined by a linear form 〈θ, x〉. That has to do with the fact that
if we draw a Cartesian coordinate system and mark the data vectors x as points in that
coordinate system, the classification rule of linear classifier boils down to a linear plane
decision boundary that is perpendicular to θ. In other words, θ (interpreted as a vector in
that coordinate systme) defines a hyperplane that is perpendicular to it, and that hyperplane
divides the space of data vectors in half - all vectors on one side are predicted to have positive
labels and all vectors on the other side are predicted to have negative labels. This can be
seen by recalling that 〈x, θ〉 equals projection of the vector x on the vector θ times the norm
of θ.

In order to make sure that the decision boundary does not have to pass through the
origin, we need to in effect to have a classification rule x1θ1 + · · ·+xdθd + c = 〈x, θ〉+ c. The
added term c is called a bias term and it enables the decision boundary to not pass through
the origin. To simplify notation, however, we assume that all vectors x inculde 1 as one of
their dimension, hence the inner product 〈x, θ〉 already includes the offset term implicitly.

Note that we can increase the dimensionality of the data vectors x by adding powers of x
or other transformations. For example, given a two dimensional data vector x = (x1, x2) we
can create a sixth dimensional corresponding vector x̃, defined by x̃ = (1, x1, x2, x

2
1, x

2
2, x1x2).

We can then train a linear classifier on the transformed data vectors (x̃(1), y(1)), . . . , (x̃(d), y(n))
rather than on the original data (x(1), y(1)), . . . , (x(d), y(n)). The resulting classifier will be
linear in the coordinate system of x̃ but non-linear in the coordinate system of x. Such
“feature engineering” is often used in building non-linear classifiers using linear classifier
implementations.

3 Probabilistic Classifiers and Maximum Likelihood

The above definition of classifier defines a map from a vector of features x to a +1 or -1
label. It is useful to have also a measure of confidence of that prediction as well as a way to
interpret that confidence in an objective manner. Probabilistic classifiers provide that tool
by defining the probabilities of the labels +1 and -1 given the feature vector x. Recall the
fact that the two probabilities must be non-negative and sum to one. The probabilities of
the two labels given a feature vector are written as pθ(Y = 1|X = x) and pθ(Y = −1|X = x)
where θ is a parameter vector that defines the clasifier.

Statistical theory strongly suggests that prbabilistic classifiers should be learned from the
labeled vectors (x(1), y(1)), . . . , (x(n), y(n)) using the maximum likelihood estimator (MLE)1,

1Unless you are a Bayesian in which case you do not belive in a single classifier representing the “truth”
but rather in a collection of classifiers, each correct with some probability.

2

defined below

θ̂MLE = arg max
θ

pθ(Y = y(1)|X = x(1)) · · · pθ(Y = y(n)|X = x(n)) (1)

= arg max
θ

log pθ(Y = y(1)|X = x(1)) + · · ·+ log pθ(Y = y(n)|X = x(n)). (2)

There are several reasons for using the MLE: (a) it converges to the optimal solution in the
limit of large data2, and that convergence occurs at the fastest possible rate of convergence.

4 Logistic Regression

There are many probabilistic classifiers, but the most popular one is logistic regression whose
probabilistic definition is given below

p(Y = y|X = x) =
1

1 + exp(y〈θ, x〉)
,

where y is either +1 or -1. We can ascertain that p(Y = 1|x) + p(Y = −1|x) = 1:

1

1 + exp(〈θ, x〉)
+

1

1 + exp(−〈θ, x〉)
=

1 + exp(〈θ, x〉) + 1 + exp(−〈θ, x〉)
(1 + exp(〈θ, x〉))(1 + exp(−〈θ, x〉))

(3)

=
1 + exp(〈θ, x〉) + 1 + exp(−〈θ, x〉)
1 + exp(〈θ, x〉) + exp(−〈θ, x〉) + 1

= 1. (4)

Recall that if p(Y = 1|x) > 0.5 we have greater confidence of the label 1 than -1 and vice
verse if p(Y = 1|x) < −0.5. Thus, the decision boundary is precisely the set of vectors x for
which p(Y = 1|x) = p(Y = −1|x) = 0.5. This occurs when

1

2
=

1

1 + exp(〈θ, x〉)
(5)

1 + exp(〈θ, x〉) = 2 (6)

〈θ, x〉 = log(1) = 0. (7)

In other words, the decision boundary or the set of vectors where the logistic regression
classifier is not sure how to classify is precisely the set of vectors x for which 〈θ, x〉 = 0,
which implies that logistic regression is a linear classifier whose decision boundary is the
hyperplane that is perpendicular to the vector θ.

If we want to predict the label associated with a feature vector x we can use the prediction
rule sign(θ, x), but if we want to have a measure of confidence of that prediction, interpreted
as a probability, we can use p(Y = y|X = x) = 1 + exp(y〈θ, x〉).

2assuming the data is generated based on the logistic regression model family and n→∞ while d is fixed.

3

5 Solving the MLE using Iterative Optimization

Substituting the logistic regression formula for p(Y = y|X = x) in (2) we get the following
optimization problem

θ̂MLE = arg max
θ

n∑
i=1

log
1

1 + exp(y(i)〈θ, x(i)〉)
= arg max

θ

n∑
i=1

− log
(
1 + exp(y(i)〈θ, x(i)〉)

)
= arg min

θ

n∑
i=1

log
(
1 + exp(y(i)〈θ, x(i)〉)

)
. (8)

To get the θ vector that minimizes the above expression, the method of gradient descent
is typically used: (a) initialize the dimensions of θ to random values, (b) for j = 1, . . . , d,

update θj ← θj − α
∂
∑n

i=1 log(1+exp(y(i)〈θ,x(i)〉))
∂θj

, (c) repeat step (b) until the updates become

smaller than a threshold. The parameter α is the step size, and it is customary to let α decay
as the gradient descent iterations increase. In cases when the data vectors x(i) are sparse,
the above computation of the partial derivative can be made particularly fast. Since (8) is
convex in θ, the gradient descent algorithm will reach the single global maximum regardelss
of the starting point (though that maximum could be at θj → ±∞ for some j).

Gradient descent or its variations work effectively for non-massive data. When the data
is very big, the method of stochastic gradient descent is typicallly used: (a) initialize the
dimensions of θ vector to random values, (b) pick one labeled data vector (x(i), y(i)) randomly,

and update for each j = 1, . . . , d: θi ← θj − α
∂ log(1+exp(y(i)〈θ,x(i)〉))

∂θj
(c) repeat step (b) until

the updates of the dimensions of θ become too small.

6 High Dimensions, Overfitting, and Regularization

When x is high dimensional the issue of overfitting comes up: there are too many parameters
to estimate from the available labeled data, resulting in a trained classifier that fits random
noise patterns that exist in the data, rather than the rule governing the likely behavior.
For example, consider an extreme case (for illustration purposes) of d = 106 and n = 2.
Obviously we cannot properly learn a million parameters and how they define the linear
decision boundary in a million dimensional space based on 2 labeled data vectors.

A way to handle this situation is to add a regularization term to the maximum likelihood
cost function (2): βθ21 + · · ·+ βθ2d or β|θ1|+ · · ·+ β|θd|. Such rule penalizes high values of θ
and tempers the MLE in order to prevent it from achieving high values of θ1, . . . , θd unless
there is strong evidence in the data for it. The selection of β should be done carefully by
experimentation, and in fact the best value of β depends on the situation at hand, and in
particular (though not exclusively) on the relationship between d and n. It is customary to
try different values of β, for example β = 0.01, 0.1, 0.5, 1, 5, 10, 100, and train the classifier
for each of these values and later select the classifier that achives the best performance on
a separate held out set of labeled vectors. The grid of possible values should be adjusted to
make sure that we find a β close to the optimal value.

4

Notes

The Shiny App (Web App embedding R code) shows how logistic regression can be used to define
non-linear classifiers in the original space https://tonyfischetti.shinyapps.io/InteractiveLogisticRegression.
The tutorial
http://nbviewer.ipython.org/gist/vietjtnguyen/6655020 shows Python code implemeting logistic
regression and visualizing the results and the training process.

5

https://tonyfischetti.shinyapps.io/InteractiveLogisticRegression
http://nbviewer.ipython.org/gist/vietjtnguyen/6655020

	Binary Classification
	Linear Classifiers and Hyperplanes
	Probabilistic Classifiers and Maximum Likelihood
	Logistic Regression
	Solving the MLE using Iterative Optimization
	High Dimensions, Overfitting, and Regularization

