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m-Estimators and z-estimators (also called estimating equations) are natural extensions of the MLE.
They enjoy similar consistency and are asymptotically normal, although with sometimes higher asymptotic
variance. There are several reasons for studying these estimators: (a) they may be more comptuationally
efficient than the MLE, (b) they may be more robust (resistent to deviations from the assumptions) than
MLE, and (c) they can be analyzed using techniques that do not assume the true model is within the assumed
parametric family. We follow along lines similar to [2] where more details may be found.

We assume that we have n samples X1, . . . , Xn
iid∼ P ∈ Q and we consider a parametric family P = {pθ :

θ ∈ Θ} ⊂ Q for the purpose of approximating P . Note that P is not necessarily a member of P. The
m-estimator associated with a given a function mθ(x) is

arg max
θ∈Θ

Mn(θ) where Mn(θ) =
1
n

n∑
i=1

mθ(Xi).

The z-estimator associated with a given vector valued function ψθ = (ψθ,1, . . . , ψθ,l) : X → Rl is the value
of θ in Θ satisfying the following l-equations

Ψn(θ) = 0 where Ψn(θ) =
1
n

n∑
i=1

ψθ(Xi).

The two estimators are equivalent if mθ is concave and smooth in θ and ψθ,i(x) = ∂mθ(x)/∂θi. The case
mθ(x) = log pθ(x) or ψθ,i(x) = ∂ log pθ(x)/∂θi reduces m or z-estimators to the MLE. In some cases it is
convenient to work with m-estimators and in other cases with z-estimators.

Consistency

Consistency, in this case, corresponds to the convergence of the m-estimator to θ0
def= arg maxθ∈ΘM(θ) where

M(θ) def= E Pmθ(x). Note that this does not mean convergence to the truth i.e., M(θ) 6= P since P may lie
outside {pθ : θ ∈ Θ}. Rather we have convergence to θ0 - the “projection” of P on {pθ : θ ∈ Θ}. Note that
in the case of the MLE, the projection is in the KL-divergence sense: θ0 = arg minθ∈ΘDKL(P || pθ). The
proposition below is in terms of m-estimates but a similar one holds for z-estimates.

Proposition 1 ([2]). Assume supθ∈Θ |Mn(θ)−M(θ)| p→ 0 (law or large numbers convergence Mn(θ) p→M(θ)
is uniform over θ), and for all ε > 0, supθ:d(θ,θ0)≥εM(θ) < M(θ0). Then for any sequence of estimators θ̂n
with Mn(θ̂n) ≥Mn(θ0)− oP (1) we have θ̂n

p→ θ0

The first condition is satisfied by the uniform strong law of large numbers and is satisfied for example
if Θ is compact, Mn is continuous in θ for all x and if |Mn(x)| < K(x), ∀x, θ for some function K with
E PK(X) < ∞ [1]. There are other less restrictive conditions. The second condition correspond to θ0

being isolated from the rest of the function and may be easily verified by examining the shape of the
function M . For example, it holds for concave and continuous M over a compact set Θ. The assertion
Mn(θ̂n) ≥Mn(θ0)− oP (1) is trivially satisfied if θ̂n is an m-estimator (maximizes Mn).

Proof. The uniform convergence of Mn to M implies Mn(θ0) p→M(θ0) and since Mn(θ̂n) ≥Mn(θ0)− oP (1)
we have Mn(θ̂n) ≥M(θ0)−oP (1) and M(θ0)−M(θ̂n) ≤Mn(θ̂n)−M(θ̂n)+oP (1) ≤ supθ∈Θ |Mn(θ)−M(θ)|+
oP (1) p→ 0. By the second assumption, ∀ε > 0 there exists η > 0 with M(θ) < M(θ0) − η for every θ for
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which d(θ, θ0) ≥ ε. Thus, the event {d(θ̂n, θ0) ≥ ε} is contained in {M(θ̂n) < M(θ0)− η} whose probability
converges to 0.

Asymptotic Normality

We prove below that z-estimators θ̂n (the zero of the vector valued Ψn(θ) = 1
n

∑n
i=1 ψθ(Xi)) are asymp-

totically a Gaussian whose mean is the zero of E Pψθ(X) which we denote by θ0. We denote the matrix
of partial derivates of ψθ by ψ̇θ. The result below reduces to the standard MLE asymptotic normality if
ψθ = ∇ log pθ and P ∈ {pθ : θ ∈ Θ}, but is more general since it applies to general z-estimates and does not
assume P ∈ {pθ : θ ∈ Θ}. A similar result may be stated for m-estimators.

Proposition 2. We assume that Θ ⊂ Rl is open and convex, E Pψθ0(X) = 0, E P ‖ψθ0(X)‖2 <∞, E P ψ̇θ0(X)
exists and is non-singular, and |Ψ̈ij | = |∂2ψθ(x)/∂θiθj | < g(x) for all i, j and θ in a neighborhood of θ0 for
some integrable g. Then every consistent estimator sequence θ̂n for which Ψn(θ̂n) = 0 ∀n satisfies

θ̂n = θ0 −
1
n

(E P ψ̇θ0)−1
n∑
i=1

ψθ0(Xi) + oP

(
1√
n

)
, and (1)

√
n(θ̂n − θ0) N(0, (E P ψ̇θ0)−1(E Pψθ0ψ

>
θ0)(E P ψ̇θ0)−1). (2)

Proof. By Taylor’s theorem there exists a random vector θ̃n on the line segment between θ0 and θ̂n for which

0 = Ψn(θ̂n) = Ψn(θ0) + Ψ̇n(θ0)(θ̂n − θ0) +
1
2

(θ̂n − θ0)>Ψ̈n(θ̃n)(θ̂n − θ0)

which we re-arrange as

√
nΨ̇n(θ0)(θ̂n − θ0) +

√
n

1
2

(θ̂n − θ0)>Ψ̈n(θ̃n)(θ̂n − θ0) = −
√
nΨn(θ̂n) = −

√
nΨn(θ0) + oP (1) (3)

where the second equality is due to the fact that θ̂n
p→ θ0 and that continuous functions preserves limits.

Since Ψ̇n(θ0) converges by the law of large numbers to E P ψ̇θ(X) and Ψ̈n(θ̃n) converges to a matrix of
bounded values in the neighborhood of θ0 (for large n) Equation (3) becomes

√
n(E P ψ̇θ(X)+oP (1)+

1
2

(θ̂n−θ0)OP (1))(θ̂n−θ0) =
√
n(E P ψ̇θ(X)+oP (1))(θ̂n−θ0) = −

√
nΨn(θ0)+oP (1)

since θ̂n − θ0 = oP (1) and oP (1)Op(1) = oP (1) (the notation OP (1) denotes stochastically bounded and it
applies to Ψ̈n(θ̃n) as described above). The matrix E P ψ̇θ(X) + oP (1) converges to a non-singular matrix
and multiplying by its inverse proves (1).

Equation (2) follows from (1) by noticing that n−1/2
∑n
i=1 ψθ0(Xi) is an average of iid RVs with expecta-

tion 0. Applying Slutsky’s theorem followed by the central limit theorem to the right hand side establishes
normality while a simple calculation establishes the variance in (2).

If we neglect the remainder in (1), the (asymptotic) influence function I is

In(z) def= θ̂n(X1, . . . , Xn−1, z)− θ̂n−1(X1, . . . , Xn−1) ≈ 1
n

(E P ψ̇θ0)−1ψθ0(z)− 1
n(n− 1)

n−1∑
i=1

(E P ψ̇θ0)−1ψθ0(Xi)

=
1
n

(E P ψ̇θ0)−1ψθ0(z) + oP

(
1
n

)
. (4)
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