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In this note we summarize the basic definitions and properties involving Markov chains. For more details
and proofs see [1]. A Markov chain is a discrete-time discrete-state stochastic process that satisfies the
Markov assumption p(Xi|Xi−1, . . . , Xi−k) = p(Xi|Xi−1) for all 1 ≤ k < i = 1, 2, . . .. By discrete time we
mean that the process is a distribution over {Xi : i ∈ N} (N are the non-negative integers). By discrete space
we mean Xi ∈ N. Because of the Markov assumption the process is characterized by an (infinite) transition
matrix Tij(t) = p(Xt+1 = j|Xt = i) and by a (infinite) vector of initial state probabilities ρi = p(X0 = i).
In this note we will assume (as is usually done) that the chain is homogeneous i.e., the transition matrix is
independent of the time: T (t) = T for all t. As a consequence we have that1 [T 2]ij = p(Xt+2 = j|Xt = i)
and more generally Tn is the n-step transition matrix whose rows are non-negative numbers summing to
one. Similarly using matrix notation we have p(Xn) = ρ>Tn. Note that when there are only a finite number
of states, T is a finite matrix, and ρ is a finite dimensional vector.

A state i is said to be accessible from state j if for some integer n > 0, Tn
ij > 0 i.e., there is some positive

probability of moving from i to j after a finite period of time. If i is accessible from j and j is accessible from
i the two state are said to communicate with each other, denoted by i↔ j. It can be shown that ↔ relation
induces a partition into equivalence classes of communicating states. If there is only one equivalence class
the chain is said to be irreducible. The period d(i) of a state i is the greatest common divisor of all integer
n ≥ 1 for which Tn

ii > 0. It can be shown that all states within the same equivalence class of the ↔ relation
have the same period. If the period of a state is one we say that it (and its equivalence class) is aperiodic.

A state i is recurrent if starting from i the probability of returning to i after some finite time is 1. A
non-recurrent state is said to be transient. It can be shown that a state i is recurrent iff assuming X0 = i
the expected number of returns to i is infinity

∑∞
n=1 T

n
ii =∞. Furthermore, it can be shown that all states

within an equivalence class of communicating states are either all recurrent or all transient. For example a

chain with a positive T is irreducible, aperiodic and recurrent. If πi
def
= limn T

n
ii > 0 for some i in a recurrent

class then the same holds for the entire class and we call the state (and the class) positive recurrent or
strongly ergodic (otherwise we say that it is null-recurrent or weakly ergodic). If the state space is finite all
the states are either positive recurrent or transient (there are no null-recurrent states).

Proposition 1 (Basic Markov Chain Theorem). In an irreducible positive-recurrent aperiodic chain the
limit π exists and is an eigenvector of T> with eigenvalue 1 i.e., it is characterized by the following equations

πi ≥ 0,

∞∑
i=0

πi = 1, T>π = π.

It j is a transient state then Tn
ij → 0 regardless of i. If i, j are in the same aperiodic recurrent class Tn

ij →
πj ≥ 0. If i, j are in the same periodic recurrent class the same holds if we replace Tn

ij by n−1
∑n

m=1 T
m
ij . If

j ∈ C for an aperiodic recurrent class C and i is in a transient class R we have

lim
n→∞

Tn
ij = πi(C) lim

n→∞
Tn
jj = πi(C)πj

where πi(C) is the probability of arriving at the recurrent class C if the initial state is i ∈ R. The probabilities
πi(C) may be found by solving the equations (where πn

i (C) below is the probability of arriving at recurrent

1For notational brevity we use matrix notation to multiply two infinite matrices or an infinite matrix with an infinite vector
with the obvious interpretation i.e., [T 2]ij =

∑∞
k=0 TikTkj .
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class C if the initial state is i for the first time after n steps)

πi(C) = π1
i (C) +

∞∑
n=2

πn
i (C) = π1

i (C) +
∑
j∈R

Tij

∞∑
n=2

πn−1
j (C) = π1

i (C) +
∑
j∈R

Tijπj(C), i ∈ R. (1)

Note in particular that in an irreducible positive-recurrent aperiodic chain the limiting distribution
limn→∞ Tn

ij = πj does not depend on i. Consequentially, the process will converge as n → ∞ to a sta-
tionary state distribution π regardless of the initial state or the initial state distribution ρ = p(X0).

Analogous to the πi(C) above are τni (R), defined as the probabilities that starting from state i ∈ R
the process remains in the transient class R for the next n transitions. We show by induction that τni (R)
is decreasing in n: τ2i (R) =

∑
j∈R Tijτ

1
j (R) ≤

∑
j∈R Tij = τ1i (R), and assuming the induction hypothesis

holds for τni (R) ≤ τn−1i (R), i ∈ T , we have 0 ≤ τn+1
i =

∑
j∈R Tijτ

n
j ≤

∑
j∈R Tijτ

n−1
j = τni . Since τni (R) is

a non-negative decreasing sequence in n it converges to a limit τi(R) corresponding to the probabilities of
never enterring a recurrent class (after being in state i) which satisfies

τi(R) =
∑
j∈R

Tijτj(R), i ∈ R. (2)

If the only bounded solution for (2) is τ(R) ≡ 0 then with probability 1 starting from any transient state in
R leads to entrance into the recurrent class. The following result is useful in determining whether a given
chain is recurrent or transient.

Proposition 2. An irreducible Markov chain is transient iff [Ty]i = yi, i > 0 has a bounded non-constant
solution y. If there exists a solution y for [Ty]i ≤ yi, i > 0 with yi →∞ the chain is recurrent.

Infinite Gambler’s Ruin Example

The gambler’s ruin process models a gambler playing an infinitely rich opponent (such as a casino): T0∗ =
(1, 0, 0, . . .), T1∗ = (q, 0, p, 0, 0, . . .), T2∗ = (0, q, 0, p, 0, 0, . . .). In each turn the gambler wins one money
unit with probability p and loses the same amount with probability q. The index of the state reflects the
gambler’s money with the zero state being an absorbing state (where the gambler cannot gamble any more)
also known as the gambler’s ruin. The equivalence classes of communicable states are C = {0} (period 0,
recurrent) and R = {1, 2, . . . , } (period 2, transient). The system of equations (1) for uj = πj({0}) become

u1 = q + pu2, ui = qui−1 + pui+1, i ≥ 2

whose solution for u (assuming it is bounded as it is a vector of probability values) is ui ≡ 1 if q ≥ p and
ui = (q/p)i otherwise. The remarkable conclusion is that when the gamble is stacked against the gambler or
even if it is a fair gamble i.e., q ≥ p, the gambler will be ruined with probability 1 regardless of their initial
fortune. Moreover, even if the gambler has favorable odds p > q he or she will still be ruined with probability
(q/p)initial captial. The lack of symmetry between the gambler and the casino is due to the fact that the casino
has unlimited funds. It is indeed not recommended to play against such an opponent indefinitely.
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