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Markov Chain Monte Carlo Basics

In an earlier note, we saw how samples can be used to approximate expectations
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We also saw a number of techniques for producing samples from a distribution p such as the histogram and
transformation methods and rejection and importance sampling. Markov chain Monte Carlo (MCMC) is a
collection of sampling methods that are based on following random walks on Markov chains.

Homogenous Markov chains Xy, X7, X5, ... are random processes that are completely characterized by
the transition probabilities P(X,, = y|X,—1 = z) = T(z,y) and initial probabilities my(z) = P(Xp = z). To
simplify the notation we will assume that X; are discrete and finite X; € {1,...,k} and we will consider

7 and T as a (row) vector and matrix of probabilities. For homogenous Markov processes conditional
distribution of X,, given X,,_1 is independent of Xi,...,X,,_2. As a result, we have P(X;) = 71 = moT.
Similarly, 7, = meT" and for large k, 7 tends to a unique stationary distribution 7 satisfying 77 = 7
(regardless of mg) if the Markov chain characterized by T is ergodic. In other words, no matter what is the
initial distribution 7y (or where we start from) the resulting position distribution after k steps tends to the
stationary distribution 7 for large k. The idea of MCMC is to generate a random sample from p by following
a random walk of k£ steps on a Markov chain T, for which p equals its stationary distribution 7.

Thus, no matter where we start, if we follow a random walk for a long period (called burn-in time) we
will end up with a sample from its stationary distribution. If we want several samples, we can either (i)
repeat the process several times (ii) take consecutive samples after the burn in time or (iii) follow a random
walk and record every [-step as a sample. Approach (ii) will not produce independent samples and approach
(iii) will result in approximately independent samples from = if [ is sufficiently large.

To sample from p using MCMC, we need to design a Markov chain T" whose stationary distribution 7 is
p. To ensure that, it suffices to show that T satisfies the detailed balance property with respect to p
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We also need to ensure that the Markov chain described by T is ergodic so there will be a unique stationary
distribution. One simple way to ensure ergodicity of T is to have T;; > 0 for all 4, j. It is useful to know (and
easy to verify) that if we have several Markov chains T1,...,T; that satisfy the detailed balance property
then a linear combination of them Zi o;T; would also satisfy it.

The Metropolis-Hastings Algorithm

The Metropolis-Hastings sampling model constructs an ergodic Markov chain that satisfies the detailed
balance property with respect to p and therefore produce the appropriate samples. The transition T is



based on sampling from a proposal conditional distribution q(z|z(t)) (which we assume may be easily done).
Specifically, given the t-step in the random walk z(*) we generate the next step z(*t1) as follows:
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where 2/ ~ q(z|z(t)). The two stage process results in the following Markov transition
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T is ergodic if ¢(z]2¥) > 0 and detailed balance w.r.t p holds since T above is written as a sum of two
matrices that satisfy the detailed balance property w.r.t p
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In practice, the proposal is often taken to be a Gaussian q(z'|z) = N(2’;2,02I) which is an easy dis-
tribution to sample from (for example using the Box-Miiller method!). In this and related other case

q(#'|z) = q(Z'|z) and the acceptance probability simplifies to min(1, p’é’fg)) which demonstrates that if the

proposed state is more likely than the old one, it is accepted with probability 1. If the proposed state 2’ is
less likely than the current one z(®), the probability of accepting depends on the likelihood ratio p(z’)/p(z").
Choosing a proposal with small variance (for example o2 — 0 for the above Gaussian proposal) would result
in relatively high acceptance rates but with strongly correlated consecutive samples. Increasing the variance
would de-correlate consecutive accepted samples to some extent, but it is also likely to reduce the acceptance
rate.

Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings where the proposal ¢ is based on the following two

stage procedure. First, a single dimension i of z is chosen randomly (say uniformly). The proposed value z’
)

is identical to z except for its value along the i-dimension z; is sampled from the conditional p(zz|z(fz) where
z(_tz) = {zgt), R ,zi(t_)17 zi(j_)l, ce 27(7?} Since
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the acceptance rate is always 1 and Gibbs sampling performs a random walk where at each iteration the value
along a randomly selected dimension is updated according to the conditional distribution (geometrically, this
constitutes axis aligned transitions). The detailed balance property holds since Gibbs is a special case of
Metropolis and T is ergodic if all dimensions are updated with positive probability.

Gibbs sampling is useful when sampling from p(zl\zg) is easy and quick. In these cases, each random
walk iteration is quick and all proposed values are accepted. Examples for such models are Bayesian networks
or other models that are specified as a product of conditional distributions.

1See for example Numerical Recipes in C, http://www.nrbook.com/a/bookcpdf/c7-2.pdf



