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In many cases the observed data contains missing values i.e. X(1), . . . , X(n) iid∼ p where X(i) can be
partitioned to two vectors X(i) = (Y (i), Z(i)) where Y (i) is observed and Z(i) is missing. Note that the
dimensionality of the vectors Y (i) and Z(i) may depend on i but their sum is always d. For example we
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where the sum over Z(i) is potentially multidimensional (over all possible values of the missing entries)
and is an integral when Z(i) is continuous. In many cases the summation over Z(i) above is intractable.
This is especially true when the amount of missing data grows since the number of terms in the sum grows
exponentially with the dimensionality of Z(i).

The expectation maximization (EM) algorithm maximizes instead a lower bound on the likelihood above,
constructed to be tight at the current guess θ(t). Repeatedly constructing such bounds and maximizing them
converges to a local maximum, often at a much lower computational cost than gradient descent for (1). The
EM algorithm is based on maximizing the following bound on the likelihood of the observed data
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(qi are nonzero distributions) where we used Jensen’s inequality applied to the convex f(x) = − log x

Proposition 1. For a RV X and a convex function f we have E f(X) ≥ f(EX). Moreover, if f is strictly
convex, equality holds iff X is degenerate i.e. i.e. P (X = EX) = 1.

Note that the denominator does not depend on θ and therefore can be removed in maximization over θ.
Above, we actually have a parameterized family of bounds - one bound for each selection of the distributions
q1, . . . , qn. Recall that Jensen’s inequality is equality for deterministic RV and therefore the selection
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would yield a bound with equality at θ′. The algorithm iterates between the following steps to convergence.
E step: compute the bound on the observed likelihood
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M step: maximize the bound to update new value θ(t+1)

θ(t+1) = arg max
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The fact that each iteration in the EM algorithm increases the likelihood may be seen by
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where the first inequality follows from Jensen’s inequality (for the specified qi = pθ(t)(Z
(i)|Y (i))), the second

from the maximization step in EM, and the equality follows from the tightness of the bound at θ(t).

Clustering

In clustering the task is to partition a dataset Y (1), . . . , Y (n) ∈ Rd into K disjoint sets so that each set has
a spatially coherent set of points (we denote data here using Y rather than X for consistency with the rest
of this note). Note that this is an unsupervised task i.e., labels are not available during the training phase.

The most well-known clustering technique is k-means: start by randomly initializing the cluster centroids
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A better performing clustering technique is EM for Gaussian mixture model. It is similar to k-means but
differs in that Y (i) are assigned to each cluster with some probability (soft membership) rather than assigned
with complete certainty to one cluster (hard membership) as k-means does. The Gaussian mixture model
assumes the following generative model for our data
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where Z is a hidden variable representing the Gaussian generating Y and πj = p(Z = j). In general, the
unknown parameter θ contains µk,Σk, πk for k = 1, . . . ,K (but in some special case may contain only µ,Σ
assuming π is known, or only µ assuming Σ, π are known). Once the parameter θ is estimated by maximizing
the likelihood of the observed data we can cluster by assigning each Y (i) to the Gaussian most likely to have
generated it. The likelihood is `(θ) =

∑n
i=1 log

∑K
j=1 πjN(Y (i) ;µj ,Σj) and the corresponding EM is

E Step: Q(θ, θ(t)) = Q((π, µ,Σ), (π(t), µ(t),Σ(t))) =

n∑
i=1

k∑
j=1

F
(t)
ij log πjN(Y (i) ;µj ,Σj)

F
(t)
ij = pθ(t)(Z

(i) = j|Y (i)) =
N(Y (i) ;µ

(t)
j ,Σ

(t)
j )π

(t)
j∑K

j′=1N(Y (i) ;µ
(t)
j′ ,Σ

(t)
j′ )π

(t)
j′

M Step: θ(t+1) = (π(t+1), µ(t+1),Σ(t+1)) = arg max
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Q((π, µ,Σ), (π(t), µ(t),Σ(t))).

It is straightforward to show that the above maximization has the following closed form. Maximizing for π
is similar to deriving the multinomial MLE and maximizing for µ,Σ is similar to the Gaussian MLE.
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