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In this note we provide a short proof based on Chapters 16-17 of [1] for the consistency of the multivariate
maximum likelihood estimator (mle). Consistency is a condition which ensures that for large datasets the
mle will converge to the true parameter. We assume that at this point the reader is familiar with the note
Consistency of Estimators.

We first introduce the uniform strong law of large numbers. We assume that X1, X2, . . . are iid sam-
ples from F and U(x, θ) is a function of x for all θ ∈ Θ. The strong law of large numbers state that
(1/n)

∑n
i=1 U(Xi, θ) → EU(X, θ) def= µ(θ) almost surely (and therefore also in probability i.e. ∀ε > 0,

P (|n−1
∑n
i=1 U(Xi, θ) − µ(θ)| > ε) → 0). The uniform strong law of large numbers strengthen the con-

vergence to be uniform over the space Θ i.e.

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

U(Xi, θ)− µ(θ)

∣∣∣∣∣ a.s.→ 0.

If the set Θ is finite, the above uniform convergence follows from the strong law of large numbers because
the intersection of a finite numbers of sets of probability 1 has probability 1. We have the following result
for a compact (potentially infinite) Θ, originally due to Le Cam (for a proof see Theorem 16(a) in [1]).

Proposition 1. Let Θ be a compact parameter space and U(x, θ) an upper semi-continuous in θ for
all x. If there exists a function K(x) such that EK(X) < ∞ and |U(x, θ)| ≤ K(x) for all x, θ, then
1
n

∑n
i=1 U(Xi, θ)

a.s.→ µ(θ) uniformly i.e.

P

{
lim
n→∞

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

U(Xi, θ)− µ(θ)

∣∣∣∣∣ = 0

}
= 1

Next, we need the following result of Shannon asserting the non-negativity of the KL divergence.

Proposition 2. For any two densities or mass functions p, q,

D(p||q) def= E p log
p(X)
q(X)

≥ 0

with equality iff p ≡ q.

Proof. Apply Jensen’s inequality to obtain

−D(p||q) = E p log
q(X)
p(X)

≤ logEp
q(X)
p(X)

= log
∫
q(x) dx = 0

with equality iff p ≡ q (replace integral above with a sum if X is discrete).

We now assume that X1, X2, . . . are sampled from pθ0 and define the likelihood function as Ln(θ) =∏n
i=1 pθ(xi). A maximum likelihood estimator (mle) is defined as any function θ̂n = θ̂(x1, . . . , xn) such that

1



Ln(θ̂n) = supθ∈Θ Ln(θ). The mle maximizes

1
n

logLn(θ)− 1
n

logLn(θ0) =
1
n

n∑
i=1

log
pθ(Xj)
pθ0(Xj)

a.s.→ −D(pθ0 ||pθ) ≤ 0

which converges by the law of large numbers to an expression that is maximized at 0 iff θ0 = θ according
to Proposition 2. This suffices to prove strong consistency of the mle if Θ is finite. However, in most cases
Θ is infinite and we need to use Proposition 1 to extend the result. The proof below of the mle’s strong
consistency is due to Wald.

Proposition 3. Let X1, X2, . . . be random vectors sampled iid from pθ0 where the parameter space Θ ⊂ Rk
is compact and p is continuous in θ for all x. We assume further identifiability i.e. pθ ≡ pθ0 ⇔ θ = θ0, and
that there exists a function K(x) with E θ0 |K(X)| <∞ and log pθ(x)− log pθ0(x) ≤ K(x) for all x, θ. Then
for any sequence of mle θ̂n we have θ̂n

a.s.→ θ0.

Proof. The conditions of Proposition 1 are satisfied for U(x, θ) def= log pθ(x)−log pθ0(x) and µ(θ) = EU(X, θ) =
−D(pθ0 , pθ). Let ρ > 0 and define the compact set S = {θ ∈ Θ : ‖θ − θ0‖ ≥ ρ}. Since µ(θ) is continu-
ous it achieves its maximum on S denoted by δ = supθ∈S µ(θ). By Proposition 2, δ < 0 and hence by
Proposition 1 there exists N such that ∀n > N , supθ∈S n−1

∑n
i=1 U(xi, θ) < 0 with probability 1. But since

n−1
∑n
i=1 U(xi, θ) equals 0 for θ = θ0 we have n−1

∑n
i=1 U(xi, θ̂n) ≥ 0 which shows that the mle is not in S.

Since ρ was arbitrarily chosen, the proposition follows.

We make the following comments.

• For the sake of simplicity we omit certain conditions in Proposition 3 concerning measurability.

• Proposition 3 also holds for upper semi-continuous p. This version, presented in [1], allows extending
the mle consistency for families of non-continuous densities such as the uniform distribution.

• Similar consistency results apply to estimators maximizing the pseudo-likelhood or composite likeli-
hood. Once identifiability is ensured, these extensions follow in a straightforward way by applying
similar arguments to each conditional in the pseudo likelihood or each likelihood object in composite
likelihood.

• The compactness of Θ may be seen as rather restrictive. It is possible, however, to extend the theorem
to open sets of Rk assuming continuity and differentiability of pθ in θ ∈ Θ. For a proof see Chapter 18
in [1].
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