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We have seen in a previous note that a specific test may lead to acceptance or rejection of H0, and has
two types of errors associated with it: type 1 error α and type 2 error β. For most tests, the rejection region
may be enlarged or shrunk trading off α for β and causing it to more often reject or accept. This leads to
the following concept of p-value. Intuitively, p-value is the type 1 error associated with the a test whose
rejection region is just barely small enough to accept HA (or equivalently reject H0).

Definition 1. The p-value, or attained significance level, of a test is the smallest level of α for which the
observed data indicates acceptance of HA.

The smaller the p-value - the more compelling the evidence that HA should be accepted. Given some
experimental evidence, reporting the p-value contains more information than reporting the specific α of a
particular test. We know not only that a particular test was accepted or rejected - but the entire relationship
between modifying the rejection region and the test result. We know that for rejection regions leading to
α ≥ p the test will reject H0 and for rejection regions leading to α < p, the test will accept H0.

Example: Consider the t-test with HA : µ > µ0,H0 : µ = µ0, with RR = [c,∞), and the test statistic
X̄. We have α = P (X̄ ≥ c|µ0) = P (T ≥

√
n c−µ0

S ) where T follows a t distribution (see previous note for
details). Solving for the empirical mean of the observed data just rejecting c = x̄ = 1

n

∑n
i=1 xi results in the

critical value of the t-distribution tp =
√

n x̄−µ0
S which can be solved for p using the critical values table of

the t-distribution.
In scientific research, researchers often publish alternative hypotheses HA that are accepted with p smaller

than some value (often 0.05). Such practice has its advantage since it could prevents the publication of non-
significant research results. On the other hand, strict adherence to this rule may prevent some important
discoveries from being made public.

Definition 2. Consider a hypothesis test with a test statistic T concerning the value of the parameter θ.
The power function is

power(θ) = P (T ∈ RR|θ) ∈ [0, 1].

For θ ∈ H0 we have power(θ) = α and for θ ∈ HA we have power(θ) = 1 − β. We therefore would like
the power function to be small at θ ∈ H0 and large for θ ∈ HA. In fact, an ideal test would have the power
function be 0 on H0 and 1 on HA. As mentioned in a previous not, there is in general a tradeoff between α
and β and it is not possible to minimize both. A standard way to choose an effective test is to select the one
that minimizes β among all tests whose α is fixed at some pre-determined level. In other words, we select a
significance level α that we deem acceptable, and among all tests with this α choose the test that minimizes
β (or maximize the power function power(θ) for θ ∈ HA).

Definition 3. If a hypothesis contains a single parameter value, it is said to be a simple hypothesis. Other-
wise, it is said to be a composite hypothesis.

We say that a test T1 is more powerful at θA ∈ HA than a test T2 if powerT1
(θA) ≥ powerT2

(θA) (sometime
strict inequality is used in the definition). If powerT1

(θ) ≥ powerT2
(θ) for all θ ∈ HA, we say that T1 is

uniformly more powerful than T2. If a test with significance level α is more powerful than all other tests
with the same significance α, it is called the uniformly most powerful (UMP) test. In general, the UMP may
not exist or if it exists it may be difficult to find. In the case that both H0 and HA are simple, the Neyman
Pearson lemma below characterizes the UMP.
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Definition 4. For a simple H0 = {θ0}, if there exists an α-level test for which power(θ), θ 6= θ0 is larger
than the power curve of any other α-level test (∀θ 6= θ0), it is said to be the uniformly most powerful test
(UMP). In other words, the power function should be above the power curves of all other α-level tests for
θ 6= θ0.

Proposition 1 (Neyman-Pearson). Consider a test between two simple hypothesis H0 = {θ0} and HA =
{θA}. The test whose rejection region corresponds to{

x1, . . . , xn :
L(x1, . . . , xn|θ0)
L(x1, . . . , xn|θA)

< k

}
,

where L(x1, . . . , xn|θ) is the likelihood, is UMP. Typically, k is chosen to correspond to a specified α.

Proof. We use the notation 1{T∈A} = 1 if T ∈ A and 0 otherwise. Let T1 be the Neyman Pearson test and
T2 another test with the same α level. The following inequality

1{T2∈RR}(kL(x1, . . . , xn|θA)− L(x1, . . . , xn)|θ0) ≤ 1{T1∈RR}(kL(x1, . . . , xn|θA)− L(x1, . . . , xn|θ0))

holds for all x (verify by examining both sides in the cases T1 ∈ RR and T1 6∈ RR. As a result, integrating
both sides of the inequality with respect to x would result in a summation of several valid inequalities which
gives another valid inequality that proves the lemma

k(1− βT2)− α ≤ k(1− βT1)− α.

Example: Consider a single sample y from a distribution with pdf fθ(y) = 1{0<y<1}θy
θ−1. By the

Neyman Pearson lemma, the UMP test for H0 : θ = 2 vs. HA : θ = 1 has test statistic T (y) = y and
rejection region k > L(y|2)

L(y|1) = 2y
1 = 2y or RR = [0, k/2). By selecting a specific α, the appropriate k is

determined, e.g. α = P (Y < k|θ = 2) =
∫ k

0
2y dy = k2 or k =

√
α.

We can use the Neyman Pearson lemma to obtain the UMP for a simple alternative hypothesis. For
composite HA we can still examine the rejection region obtained by the Neyman Pearson lemma. If that
region is not a function of θA, then the test is UMP for every single simple alternative {θA} and is also
true for a composite HA. In other words, if the rejection region computed above does not depend on θA the
Neyman Pearson lemma can be used to characterize the UMP test for a composite HA.
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