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Traditional statistics has concentrated on the case of d� n (the number of parameters to be estimated is
much smaller than the train set size). In that case the maximum likelihood estimator (MLE) performs well
and its asymptotic optimality “kicks in” (recall the asymptotic variance of the MLE is the best possible -
the inverse Fisher information). However, as higher and higher dimensional parameter spaces are considered
it was discovered that the MLE performs poorly. It overfits the training data and performs poorly on future
test data. In other words, when d 6� n the MLE picks up noise as signal, for example by assuming that
irrelevant features are relevant due to small train set size.

From a mathematical perspective, in these cases the mean squared error (MSE) of the MLE E ptrue‖θ̂ −
θtrue‖2 is too high. Recall that the MSE is the sum of the squared bias and variance and that the MLE
is unbiased (as in the case of linear regression) or asymptotically unbiased (in other cases). It turns out
that by introducing a bias we can substantially reduce the variance and get overall lower MSE. Specifically,
regularization introduces a bias by reducing the absolute value of θ̂mle (bringing it closer to 0). The resulting
estimation variance is much lower which means the overall estimation accuracy in terms of MSE (or otherwise)

is better. Intuitively shrinking θ̂mle towards 0 depresses the tendency of the MLE to overfit by picking up
training set noise for signal.

We follow with some specific regularization techniques. These techniques are most commonly described
in the context of linear regression. However, most can be applied for other models as well (Fisher’s LDA,
naive Bayes, logistic regression, etc) though without the the nice closed forms of linear regression.

The earliest form of regularization is probably James-Stein shrinkage

θ̂JS =
1

1 + τ
θ̂mle, τ > 0 (1)

which shrinks all dimensions of θ̂ uniformly. Breiman’s garrote shrinks the MLE as

θ̂garrotej = θ̂mle
j τ̂j , j = 1, . . . , d where τ̂ = arg max

τ
`(θ̂mle

1 τ1, . . . , θ̂
mle
d τd), subject to

d∑
j=1

τj ≤ c (2)

(if τj are forced to be non-negative this is called the non-negative garrote). When c < d some or all of the

components of θ̂mle are reduced in absolute value toward 0. The ridge estimator is

θ̂ridge = arg max
θ

`(θ) subject to ‖θ‖22 ≤ c (3)

where ‖v‖p = (
∑d
j=1 |vj |p)1/p. Forming the Lagrangian L(θ, λ) = `(θ) − λ(‖θ‖22 − c) and maximizing with

respect to θ by setting ∇θL = 0 we see that (3) is equivalent to

θ̂ridge = arg max
θ

`(θ)− λ‖θ‖22, λ ≥ 0 (4)

where λ(c) may be found by setting ∇λL = 0. However since c in (3) is usually chosen arbitrarily in most
cases (4) is solved for several different values of λ and the best performing estimator is chosen based on cross
validation (there is no need to find what λ corresopnds to c is c is chosen arbitrarily and has no special
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meaning). Closely related to ridge is the lasso estimator where ‖θ‖22 is replaced with ‖θ‖1 =
∑
|θj |

θ̂lasso = arg max
θ

`(θ) subject to ‖θ‖1 ≤ c (5)

= arg max
θ

`(θ)− λ‖θ‖1, λ ≥ 0. (6)

We note that the l1 penalty of the lasso encourages sparse solutions i.e., for a given λ some of the components
of θ̂lasso will be zero (more so as λ increases). The l2 penalty of ridge does not encourage sparsity, that is

the coefficients of θ̂ridge will be close to zero (perhaps very close) but not precisely zero. Since a sparse
estimator has computational and interpretability advantages lasso is often preferred over ridge. The elastic
net estimator combines both norms

θ̂elnet = arg max
θ

`(θ) subject to ‖θ‖1 ≤ c1, ‖θ‖22 ≤ c2 (7)

= arg max
θ

`(θ)− λ1‖θ‖1 − λ2‖θ‖22, λ ≥ 0. (8)

The fused lasso is useful when it is known apriori that neighboring dimensions should be similar (for example
when X1, . . . , Xd represent sequential or temporal measurements)

θ̂fus = arg max
θ

`(θ) subject to ‖θ‖1 ≤ c1,
∑
i

‖θi − θi+1‖1 ≤ c2 (9)

= arg max
θ

`(θ)− λ1‖θ‖1 − λ2
∑
i

‖θi − θi+1‖1, λ ≥ 0. (10)

Linear Regression

Although the above methods apply generally to maximum likelihood problems, the linear regression setting
enables derivation of closed forms which provides insight into the differences between different regularizers.

Assuming that X is a matrix whose rows are the training data X(1), . . . , X(n) and Y is a vector whose
entries are the training labels Y (1), . . . , Y (n), the conditional loglikelihood is −(Y−Xθ)>(Y−Xθ) + c (see
note on linear regression). Setting its gradient to zero gives the vector equation −X>Xθ+ X>Y = 0 which

imply θ̂mle = (X>X)−1X>Y. Additional insight can be gained by examining the special case of orthonormal

training examples X>X = I: θ̂mle
j = X>Y (the orthogonal projection of the columns of X on Y).

In the case of ridge, setting the penlized loglikelihood gradient to zero gives the vector equation −X>Xθ+
X>Y − λθ = 0 ⇒ θ̂ridge = (X>X + λI)−1X>Y. Intuitively, adding a small value to the diagonal of X>X

makes it non-singular and “larger”, and consequentially θ̂ridge is “smaller” than θ̂mle. In the orthonormal
case θ̂ridge = 1

1+λ θ̂
mle and each component is shrunk by the same constant factor θ̂ridge = θ̂JS.

In the case of lasso regression we have 0 = ∇(`(θ)−λ‖θ‖1)⇒ −X>Xθ+X>Y−λs(θ) = 0 where sj(θ) =
sign(θj). A closed form solution is not possible since the gradient changes with the sign of the parameter
vector θ. However, in the orthonormal case we do get a closed form as follows. The penalized loglikelihood
is −(Y−Xθ)>(Y−Xθ)/2−λ‖θ‖1 = (Y>Xθ+θ>X>Y−‖θ‖22)/2−λ‖θ‖1 = θ>θ̂mle−‖θ‖22/2−λ‖θ‖1 which

decomposes into a sum of d maximization problems θj θ̂
mle
j − θ2j/2− λ|θ|j that can be solved independently.

For each j, if |θ̂mle
j | < λj the objective function will be negative unless θj = 0 in which case the objective

function is 0. Therefore if |θ̂mle
j | < λj , θ̂

lasso
j = 0. If |θ̂mle

j | > λj , having θ̂lassoj = 0 results in a zero objective
function which may be improved upon by a non-negative solution (see later). We thus determine that if

|θ̂mle
j | > λj , θ̂

lasso
j 6= 0 in which case the objective function is differentiable and we can proceed with setting

its derivative to 0: 0 = θ̂mle
j − θj − λsign(θj) to obtain θ̂lassoj = sign(θ̂mle

j )(|θ̂mle
j | − λ). Combining the two

cases we get that in the orthonormal case

θ̂lassoj = sign(θ̂mle
j )(|θ̂mle

j | − λ)+, where A+ = max(A, 0).

We see immediately the sparsity encouraging tresholding nature of lasso as it zeros out small coefficients (as
opposed to ridge which will make them smaller but non-zero).
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Figure 1: Left: A trace of the ridge regression coefficients as a function of the regularization parameter
λ for the Matlab acetylene data. As the regularization parameter increases the parameter coefficients are
shrunk towards zero (but the parameter is vector is never sparse). Right: A trace of the lasso regression
coefficients as a function of the inverse regularization parameter cλ−1 (c is chosen such that the range is
[0, 1]) for the diabetes data. Note that as λ increases the parameter coefficients are shrunk towards zero with
many components being identically zero.

Figure 2: A comparison between the MLE, ridge (λ = 1), and lasso (λ = 0.3) for linear regression in
the orthonormal case (where each dimension can be optimized separately and closed form expressions are
available for all three regularization methods. The soft thresholding nature of the lasso encourages sparsity.
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