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A large part of statistics and machine learning depends on computing expectations. As a few ex-
amples consider: (i) summarizing the posterior distribution E (g(θ)|D) =

∫
θ
g(θ)p(θ|D) dθ (ii) comput-

ing the gradient of the normalization term for maximizing likelihood of exponential models E (fi(x)) =∫
fi(x)Z−1(θ) exp(

∑
θifi(x)) dx = ∂

∂θi
log Z(θ) (iii) marginalizing over missing data p(x) =

∫
p(x, z) dz =

E p(z)(p(x|z)) and (iv) computing probabilities p(X ∈ C) = Ep(1C).
When the expectation (integral or summation) does not have a closed form we need to resort to approx-

imation techniques. One class of approximation methods is numerical integration techniques such as the
trapezoid or Simpson’s method. A second class of approximation methods, which we will concentrate on,
are based on sampling and the law of large numbers

1
m

m∑
i=1

g(xi) ≈ E p(x)(g) if x1, . . . , xm ∼ p(x).

The above estimator is unbiased and has variance m−1Var (g(X)). The convergence above is quite stable and
rapid (as indicated by the uniform law of large numbers and large deviation theory) and does not depend
on the dimensionality of X. Slow convergence may occur, however, if g is high were p is low and vice verse.

The benefit of sampling methods over numerical integration methods is that they work better in high
dimensional cases. Some high dimensional models such as Bayesian networks p(x) =

∏
p(xi|pa(xi)) are easy

to sample from (sample from the conditional distributions - starting from the parents and progressing to
the leaves). In other high dimensional models such as exponential family models or Markov random fields,
sampling is not straightforward. In general, we will assume that we can sample from a uniform U([0, 1])
distribution. Sampling from a uniform distribution has been widely studied and many efficient methods for
doing so exist.

Histogram Method

To sample from a discrete one dimensional RV X, we can just generate a r ∼ U([0, 1]) random number and
compare it with cdf FX and sample xi for which ri ∈ [FX(xi), FX(xi+1)]. The above method can be applied
to continuous RVs by discretizing them (approximating a continuous RV by its discrete histogram). The
method works well for one dimensional RVs but suffers greatly in high dimensional cases.

Transformation Method

We focus on the case of one dimensional distribution. Extensions to high dimensionality models are straight-
forward. Assume we can sample from a uniform RV in [0, 1] and we wish to sample from a RV X. The RV
transformation X 7→ FX(X) results in a uniform RV

P (FX(X) ≤ r) = P (F−1
X (FX(X)) ≤ F−1

X (r)) = P (X ≤ F−1
X (r)) = FX(F−1

X (r)) = r.

As a result transforming the uniform samples by r 7→ F−1(r) results in samples from X. Technically, there
is a problem with the method as stated above if the pdf or pmf of X is not strictly positive (FX is not
invertible). A more careful method statement should resolve that difficulty. In low dimensional cases, the
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above transformation works well. The basic problem of computing FX and inverting it become difficult in
high dimensions and other methods are necessary.

Rejection Sampling

Again, we start with a one dimensional formulation. Assume that we want to sample from p, but we can
sample from q instead, and we know further that p(x) ≤ kq(x) everywhere for some constant k. Sampling
xi ∼ q and then ri ∼ U([0, kq(xi)]) would give a pair (xi, ri) which would be uniformly distributed over the
graph of the function (area under the function curve) kq. By rejecting the pair if ri ≥ p(x) we ensure that
the remaining sample pairs are uniformly distributed over the graph of p(x). We can then discard the ri and
keep the xi samples which constitute a sample from p.

Rejection sampling can be modified for use if p is known up to a constant p = cp̃ (its normalization term
is not easily computable). In this case we find q such that p̃ ≤ kq and proceed as before.

Adaptive rejection sampling is way of adaptively computing q and k for distributions p whose logarithm
is concave. In this case, we can upper bound the log p with a piecewise linear function (envelope) computed
based on the derivative ∇ log p at different points. The distribution itself p is then upper bounded by a
piecewise exponential function which constitutes the proposal q. As samples get rejected, they are added to
the computation of the envelope and the quality of the upper bound improves.

The difficulty here is as before in cases of high dimensionality. It is not clear how to find k and moreover
the probability of rejection (grows with k) grows exponentially with the dimensionality. Bishop [1] shows
how rejection sampling from N(µ, σ2

pI) through the distribution N(µ, σ2
qI) would necessitates k = (σq/σp)d.

The acceptance rate would be 1/20,000 for d = 1000 if σq exceeds σp by just one percent.

Importance Sampling

Importance sampling directly estimates the expectation E p(f) by noticing that

E p(g) =
∫

g(x)
p(x)
q(x)

q(x) dx = E q(g p/q)

which is approximated by averaging g(x) p(x)/q(x) over samples from x1, . . . , xm ∼ q.
A useful trick is performing importance sampling when we can’t evaluate the normalization terms of p

and q [1]. In this case p = p̃/Zp and q = q̃/Zq and

E p(g) =
Zq

Zp

∫
g(x)

p̃(x)
q̃(x)

q(x) dx ≈ Zq

Zp

1
m

m∑
i=1

p̃(xi)
q̃(xi)

g(xi)

where xi are samples from q. The factor Zq/Zp may be approximated as follows

Zq

Zp
=

1
Zq

∫
p̃(x) dx =

∫
p̃(x)
q̃(x)

q(x) dx ≈ 1
m

m∑
i=1

p̃(xi)
q̃(xi)

where xi ∼ q. Putting all this together gives

E p(g) ≈
m∑

i=1

wig(xi) wi =
p̃(xi)/q̃(xi)∑m
i=1 p̃(xi)/q̃(xi)

xi ∼ q.

As before, the main problem is high dimensions. If p, q are high dimensional, weights p(xi)/q(xi) become
smaller rapidly. If q is low where pg is high, the estimator will be highly inaccurate since it may take a long
time to obtain a meaningful sample.
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