Probability
The Analysis of Data, volume 1
Limit Theorems
$
\def\P{\mathsf{\sf P}}
\def\E{\mathsf{\sf E}}
\def\Var{\mathsf{\sf Var}}
\def\Cov{\mathsf{\sf Cov}}
\def\std{\mathsf{\sf std}}
\def\Cor{\mathsf{\sf Cor}}
\def\R{\mathbb{R}}
\def\c{\,|\,}
\def\bb{\boldsymbol}
\def\diag{\mathsf{\sf diag}}
\def\defeq{\stackrel{\tiny\text{def}}{=}}
\newcommand{\toop}{\xrightarrow{\scriptsize{\text{p}}}}
\newcommand{\tooas}{\xrightarrow{\scriptsize{\text{as}}}}
\newcommand{\tooas}{\xrightarrow{\scriptsize{\text{as}}}}
\newcommand{\tooas}{\xrightarrow{\scriptsize{\text{as}}}}
\newcommand{\tooas}{\xrightarrow{\scriptsize{\text{as}}}}
\newcommand{\tooas}{\xrightarrow{\scriptsize{\text{as}}}}
\newcommand{\tood}{\rightsquigarrow}
\newcommand{\iid}{\mbox{$\;\stackrel{\mbox{\tiny iid}}{\sim}\;$}}$
8.3. Dominated Convergence Theorem for Random Vectors
We have the following extensions of the Dominated Convergence Theorem (see Chapter F).
Proposition 8.3.1 (Dominated Convergence Theorem for Random Variables).
Consider a sequence of RVs $X^{(n)}$ for which $|X^{(n)}|\leq Y$ for some RV $Y$ with $\E|Y| < \infty$. Then
\[ X^{(n)}\tooas X \qquad \text{implies} \qquad \E(X^{(n)}) \to \E(X).\]
Proof.
We construct a discrete-time random process $\mathcal{X}=(X^{(n)}, n\in\mathbb{N})$ and consider the Dominated Convergence Theorem with $\mu$ being the distribution of the random process $\mathcal{X}$, $f_n=X^{(n)}$, and $f=X$ (see Proposition F.3.9). In this case $\int f_n\,d\mu$ becomes $\E(X^{(n)})$ and $\int f\,d\mu$ becomes $\E(X)$.
Proposition 8.3.1 (Dominated Convergence Theorem for Random Vectors).
If ${\bb X}^{(n)} \tooas \bb X$ and $\|\bb X\|^r\leq Y$ for some RV $Y$ with $\E Y < \infty$ and some $r>0$, then \[\E(\|{\bb X}^{(n)}-\bb X\|^r)\to 0.\]
Proof.
${\bb X}^{(n)} \tooas \bb X$ and $\|\bb X\|^r\leq Y$ implies $\|\bb X^{(n)}\|\leq Y$ with probability 1, which implies
\[ \|{\bb X}^{(n)}-\bb X\|^r \leq (\|{\bb X}^{(n)}\| + \|\bb X\|)^r \leq (Y^{1/r}+Y^{1/r})^r=2^r Y\]
with probability 1. The result then follows from applying the dominated convergence theorem for random variables to the sequence of RVs $\|{\bb X}^{(n)}-\bb X\|^r, n\in\mathbb{N}$ (that sequence converges with probability 1 to 0 since ${\bb X}^{(n)}\tooas X$).
The name of the proposition above is motivated by the fact that convergence $\E(\|{\bb X}^{(n)}-\bb X\|^r)\to 0$ is sometimes called convergence in the $r$-mean and denoted ${\bb X}^{(n)}\to^r \bb X$. The dominated convergence theorem for random vectors implies convergence in $r$-mean of the vector ${\bb X}^{(n)}$ to the vector $\bb X$, which is similar to the dominated convergence theorem for random variables for $r=1$.